
Alice A A K King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3179512/publications.pdf Version: 2024-02-01

ALLCE A A K KINC

#	Article	IF	CITATIONS
1	Size selection and thin-film assembly of MoS ₂ elucidates thousandfold conductivity enhancement in few-layer nanosheet networks. Nanoscale, 2022, 14, 320-324.	5.6	4
2	Tuneable synthetic reduced graphene oxide scaffolds elicit high levels of three-dimensional glioblastoma interconnectivity <i>in vitro</i> . Journal of Materials Chemistry B, 2022, 10, 373-383.	5.8	4
3	Nanosheet-Stabilized Emulsions: Near-Minimum Loading and Surface Energy Design of Conductive Networks. ACS Nano, 2022, 16, 1963-1973.	14.6	8
4	Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials. ACS Nano, 2021, 15, 2520-2531.	14.6	46
5	Cell–Substrate Interactions Lead to Internalization and Localization of Layered MoS ₂ Nanosheets. ACS Applied Nano Materials, 2021, 4, 2002-2010.	5.0	5
6	Langmuir Films of Layered Nanomaterials: Edge Interactions and Cell Culture Applications. Journal of Physical Chemistry B, 2020, 124, 7184-7193.	2.6	2
7	Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. Advanced Functional Materials, 2020, 30, 2002473.	14.9	48
8	Ultrasensitive Strain Gauges Enabled by Graphene‣tabilized Silicone Emulsions. Advanced Functional Materials, 2020, 30, 2002433.	14.9	15
9	Raman Metrics for Molybdenum Disulfide and Graphene Enable Statistical Mapping of Nanosheet Populations. Chemistry of Materials, 2020, 32, 6213-6221.	6.7	11
10	Graphene-Induced Transdifferentiation of Cancer Stem Cells as a Therapeutic Strategy against Glioblastoma. ACS Biomaterials Science and Engineering, 2020, 6, 3258-3269.	5.2	9
11	Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Applied Materials & Interfaces, 2019, 11, 31191-31199.	8.0	9
12	Sonochemical edge functionalisation of molybdenum disulfide. Nanoscale, 2019, 11, 15550-15560.	5.6	4
13	Size selection of liquid-exfoliated 2D nanosheets. 2D Materials, 2019, 6, 031002.	4.4	36
14	Functional liquid structures by emulsification of graphene and other two-dimensional nanomaterials. Nanoscale, 2018, 10, 1582-1586.	5.6	15
15	Percolating Metallic Structures Templated on Laser-Deposited Carbon Nanofoams Derived from Graphene Oxide: Applications in Humidity Sensing. ACS Applied Nano Materials, 2018, 1, 1828-1835.	5.0	12
16	Laser-Based Texturing of Graphene to Locally Tune Electrical Potential and Surface Chemistry. ACS Omega, 2018, 3, 17000-17009.	3.5	11
17	Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma. Molecular Cancer, 2018, 17, 132.	19.2	67
18	Edge-Selective Gas Detection Using Langmuir Films of Graphene Platelets. ACS Applied Materials & Interfaces, 2018, 10, 21740-21745.	8.0	11

ALICE A A K KING

#	Article	IF	CITATIONS
19	Functionalization of Silver Nanowire Transparent Electrodes with Self-Assembled 2-Dimensional Tectomer Nanosheets. ACS Applied Nano Materials, 2018, 1, 3903-3912.	5.0	7
20	Biophysical interactions between pancreatic cancer cells and pristine carbon nanotube substrates: Potential application for pancreatic cancer tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1637-1644.	3.4	17
21	X-ray irradiation-induced structural changes on Single Wall Carbon Nanotubes. Radiation Physics and Chemistry, 2017, 140, 34-37.	2.8	9
22	Selective Mechanical Transfer Deposition of Langmuir Graphene Films for High-Performance Silver Nanowire Hybrid Electrodes. Langmuir, 2017, 33, 12038-12045.	3.5	11
23	Pristine carbon nanotube scaffolds for the growth of chondrocytes. Journal of Materials Chemistry B, 2017, 5, 8178-8182.	5.8	13
24	Understanding Solvent Spreading for Langmuir Deposition of Nanomaterial Films: A Hansen Solubility Parameter Approach. Langmuir, 2017, 33, 14766-14771.	3.5	29
25	Considerations for spectroscopy of liquid-exfoliated 2D materials: emerging photoluminescence of N-methyl-2-pyrrolidone. Scientific Reports, 2017, 7, 16706.	3.3	33
26	Controlling the crystal polymorph by exploiting the time dependence of nucleation rates. Journal of Chemical Physics, 2017, 147, 144505.	3.0	5
27	Predicting the optoelectronic properties of nanowire films based on control of length polydispersity. Scientific Reports, 2016, 6, 25365.	3.3	22
28	A New Raman Metric for the Characterisation of Graphene oxide and its Derivatives. Scientific Reports, 2016, 6, 19491.	3.3	250
29	Finite-size scaling in silver nanowire films: design considerations for practical devices. Nanoscale, 2016, 8, 13701-13707.	5.6	9
30	Stretchable Conductive Networks of Carbon Nanotubes Using Plasticized Colloidal Templates. Frontiers in Materials, 2015, 2, .	2.4	0
31	Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering. Journal of Materials Chemistry B, 2015, 3, 8337-8347.	5.8	12
32	Nanocarbon-chlorophyll hybrids: Self assembly and photoresponse. Carbon, 2014, 80, 746-754.	10.3	7
33	Hypothesis: Bones Toughness Arises from the Suppression of Elastic Waves. Scientific Reports, 2014, 4, 7538.	3.3	20
34	Separation of coiled carbon fibers from an alumina support by microwave-assisted digestion or sonication. Separation and Purification Technology, 2012, 96, 248-255.	7.9	2
35	Locking Carbon Nanotubes in Confined Lattice Geometries â^' A Route to Low Percolation in Conducting Composites. Journal of Physical Chemistry B, 2011, 115, 6395-6400.	2.6	90
36	Parametric study of coiled carbon fibre synthesis on an in situ generated H2S-modified Ni/Al2O3 catalyst. Carbon, 2011, 49, 4159-4169.	10.3	7

#	Article	IF	CITATIONS
37	Enhanced Thermal Actuation in Thin Polymer Films Through Particle Nano‣queezing by Carbon Nanotube Belts. Advanced Materials, 2010, 22, 5310-5314.	21.0	7
38	Colloidâ€Assisted Selfâ€Assembly of Robust, Threeâ€Dimensional Networks of Carbon Nanotubes over Large Areas. Macromolecular Rapid Communications, 2010, 31, 609-615.	3.9	25