Alice A A K King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3179512/publications.pdf

Version: 2024-02-01

623734 477307 38 893 14 29 citations g-index h-index papers 40 40 40 1775 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A New Raman Metric for the Characterisation of Graphene oxide and its Derivatives. Scientific Reports, 2016, 6, 19491.	3.3	250
2	Locking Carbon Nanotubes in Confined Lattice Geometries â" A Route to Low Percolation in Conducting Composites. Journal of Physical Chemistry B, 2011, 115, 6395-6400.	2.6	90
3	Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma. Molecular Cancer, 2018, 17, 132.	19.2	67
4	Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. Advanced Functional Materials, 2020, 30, 2002473.	14.9	48
5	Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials. ACS Nano, 2021, 15, 2520-2531.	14.6	46
6	Size selection of liquid-exfoliated 2D nanosheets. 2D Materials, 2019, 6, 031002.	4.4	36
7	Considerations for spectroscopy of liquid-exfoliated 2D materials: emerging photoluminescence of N-methyl-2-pyrrolidone. Scientific Reports, 2017, 7, 16706.	3.3	33
8	Understanding Solvent Spreading for Langmuir Deposition of Nanomaterial Films: A Hansen Solubility Parameter Approach. Langmuir, 2017, 33, 14766-14771.	3 . 5	29
9	Colloidâ€Assisted Selfâ€Assembly of Robust, Threeâ€Dimensional Networks of Carbon Nanotubes over Large Areas. Macromolecular Rapid Communications, 2010, 31, 609-615.	3.9	25
10	Predicting the optoelectronic properties of nanowire films based on control of length polydispersity. Scientific Reports, 2016, 6, 25365.	3.3	22
11	Hypothesis: Bones Toughness Arises from the Suppression of Elastic Waves. Scientific Reports, 2014, 4, 7538.	3.3	20
12	Biophysical interactions between pancreatic cancer cells and pristine carbon nanotube substrates: Potential application for pancreatic cancer tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1637-1644.	3.4	17
13	Functional liquid structures by emulsification of graphene and other two-dimensional nanomaterials. Nanoscale, 2018, 10, 1582-1586.	5. 6	15
14	Ultrasensitive Strain Gauges Enabled by Grapheneâ€Stabilized Silicone Emulsions. Advanced Functional Materials, 2020, 30, 2002433.	14.9	15
15	Pristine carbon nanotube scaffolds for the growth of chondrocytes. Journal of Materials Chemistry B, 2017, 5, 8178-8182.	5.8	13
16	Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering. Journal of Materials Chemistry B, 2015, 3, 8337-8347.	5.8	12
17	Percolating Metallic Structures Templated on Laser-Deposited Carbon Nanofoams Derived from Graphene Oxide: Applications in Humidity Sensing. ACS Applied Nano Materials, 2018, 1, 1828-1835.	5.0	12
18	Selective Mechanical Transfer Deposition of Langmuir Graphene Films for High-Performance Silver Nanowire Hybrid Electrodes. Langmuir, 2017, 33, 12038-12045.	3.5	11

#	Article	IF	CITATIONS
19	Laser-Based Texturing of Graphene to Locally Tune Electrical Potential and Surface Chemistry. ACS Omega, 2018, 3, 17000-17009.	3.5	11
20	Edge-Selective Gas Detection Using Langmuir Films of Graphene Platelets. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21740-21745.	8.0	11
21	Raman Metrics for Molybdenum Disulfide and Graphene Enable Statistical Mapping of Nanosheet Populations. Chemistry of Materials, 2020, 32, 6213-6221.	6.7	11
22	Finite-size scaling in silver nanowire films: design considerations for practical devices. Nanoscale, 2016, 8, 13701-13707.	5.6	9
23	X-ray irradiation-induced structural changes on Single Wall Carbon Nanotubes. Radiation Physics and Chemistry, 2017, 140, 34-37.	2.8	9
24	Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Applied Materials & Date: A	8.0	9
25	Graphene-Induced Transdifferentiation of Cancer Stem Cells as a Therapeutic Strategy against Glioblastoma. ACS Biomaterials Science and Engineering, 2020, 6, 3258-3269.	5. 2	9
26	Nanosheet-Stabilized Emulsions: Near-Minimum Loading and Surface Energy Design of Conductive Networks. ACS Nano, 2022, 16, 1963-1973.	14.6	8
27	Enhanced Thermal Actuation in Thin Polymer Films Through Particle Nanoâ€Squeezing by Carbon Nanotube Belts. Advanced Materials, 2010, 22, 5310-5314.	21.0	7
28	Parametric study of coiled carbon fibre synthesis on an in situ generated H2S-modified Ni/Al2O3 catalyst. Carbon, 2011, 49, 4159-4169.	10.3	7
29	Nanocarbon-chlorophyll hybrids: Self assembly and photoresponse. Carbon, 2014, 80, 746-754.	10.3	7
30	Functionalization of Silver Nanowire Transparent Electrodes with Self-Assembled 2-Dimensional Tectomer Nanosheets. ACS Applied Nano Materials, 2018, 1, 3903-3912.	5.0	7
31	Controlling the crystal polymorph by exploiting the time dependence of nucleation rates. Journal of Chemical Physics, 2017, 147, 144505.	3.0	5
32	Cell–Substrate Interactions Lead to Internalization and Localization of Layered MoS ₂ Nanosheets. ACS Applied Nano Materials, 2021, 4, 2002-2010.	5.0	5
33	Sonochemical edge functionalisation of molybdenum disulfide. Nanoscale, 2019, 11, 15550-15560.	5.6	4
34	Size selection and thin-film assembly of MoS ₂ elucidates thousandfold conductivity enhancement in few-layer nanosheet networks. Nanoscale, 2022, 14, 320-324.	5.6	4
35	Tuneable synthetic reduced graphene oxide scaffolds elicit high levels of three-dimensional glioblastoma interconnectivity <i>in vitro</i> . Journal of Materials Chemistry B, 2022, 10, 373-383.	5.8	4
36	Separation of coiled carbon fibers from an alumina support by microwave-assisted digestion or sonication. Separation and Purification Technology, 2012, 96, 248-255.	7.9	2

ALICE A A K KING

#	Article	IF	CITATIONS
37	Langmuir Films of Layered Nanomaterials: Edge Interactions and Cell Culture Applications. Journal of Physical Chemistry B, 2020, 124, 7184-7193.	2.6	2
38	Stretchable Conductive Networks of Carbon Nanotubes Using Plasticized Colloidal Templates. Frontiers in Materials, 2015, 2, .	2.4	0