
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177325/publications.pdf Version: 2024-02-01

IAN GENZED

#	Article	IF	CITATIONS
1	Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Composite Structures, 2022, 279, 114759.	3.1	7
2	Deposition of silicate coatings on poly(ethylene terephthalate) for improved scratch and solvent resistance. Journal of Applied Polymer Science, 2022, 139, 51800.	1.3	0
3	Self-healing and repair of fabrics: A comprehensive review of the application toolkit. Materials Today, 2022, 54, 90-109.	8.3	14
4	Degradable Anti-Biofouling Polyester Coatings with Controllable Lifetimes. Langmuir, 2022, 38, 1488-1496.	1.6	1
5	Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes. Biomacromolecules, 2022, 23, 424-430.	2.6	21
6	Stiff or Extensible in Seconds: Lightâ€Induced Corrugations in Thin Polymer Sheets. Advanced Materials Technologies, 2021, 6, .	3.0	4
7	Dual-Responsive Microgels for Structural Repair and Recovery of Nonwoven Membranes for Liquid Filtration. ACS Applied Polymer Materials, 2021, 3, 1508-1517.	2.0	5
8	Continuous Ligand-Free Suzuki–Miyaura Cross-Coupling Reactions in a Cartridge Flow Reactor Using a Gel-Supported Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 9418-9428.	1.8	8
9	Functional Gels Containing Hydroxamic Acid Degrade Organophosphates in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2021, 60, 8799-8811.	1.8	2
10	Antipathogenic properties and applications of low-dimensional materials. Nature Communications, 2021, 12, 3897.	5.8	63
11	DFT Analysis of Organotin Catalytic Mechanisms in Dehydration Esterification Reactions for Terephthalic Acid and 2,2,4,4-Tetramethyl-1,3-cyclobutanediol. Journal of Physical Chemistry A, 2021, 125, 4943-4956.	1.1	0
12	UV―and Thermallyâ€Active Bifunctional Gelators Create Surfaceâ€Anchored Polymer Networks. Macromolecular Rapid Communications, 2021, 42, e2100266.	2.0	4
13	Dynamic Surfaces—Degradable Polyester Networks that Resist Protein Adsorption. Langmuir, 2021, 37, 8978-8988.	1.6	1
14	Surfaceâ€Bound Microgels for Separation, Sensing, and Biomedical Applications. Advanced Functional Materials, 2021, 31, 2104164.	7.8	29
15	Novel computational design of high refractive index nanocomposites and effective refractive index tuning based on nanoparticle morphology effect. Composites Part B: Engineering, 2021, 223, 109128.	5.9	4
16	Tuning the Properties of Surface-Anchored Polymer Networks by Varying the Concentration of a Thermally Activated Cross-Linker, Annealing Time, and Temperature in a One-Pot Reaction. ACS Applied Polymer Materials, 2021, 3, 5568-5577.	2.0	1
17	Packing density, homogeneity, and regularity: Quantitative correlations between topology and thermoresponsive morphology of PNIPAM-co-PAA microgel coatings. Applied Surface Science, 2020, 508, 145129.	3.1	8
18	Dependence of deposition method on the molecular structure and stability of organosilanes revealed from degrafting by tetrabutylammonium fluoride. Physical Chemistry Chemical Physics, 2020, 22, 658-666.	1.3	3

#	Article	IF	CITATIONS
19	Nonwoven fiber mats with thermo-responsive permeability to inorganic and organic electrolytes. Journal of Membrane Science, 2020, 616, 118439.	4.1	11
20	Enhanced mid-wavelength infrared refractive index of organically modified chalcogenide (ORMOCHALC) polymer nanocomposites with thermomechanical stability. Optical Materials, 2020, 108, 110197.	1.7	12
21	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	1.1	69
22	Effect of Poly(vinyl butyral) Comonomer Sequence on Adhesion to Amorphous Silica: A Coarse-Grained Molecular Dynamics Study. ACS Applied Materials & Interfaces, 2020, 12, 47879-47890.	4.0	10
23	Network-supported, metal-mediated catalysis: progress and perspective. Reaction Chemistry and Engineering, 2020, 5, 1892-1902.	1.9	6
24	Effect of surface interactions on the settlement of particles on a sinusoidally corrugated substrate. RSC Advances, 2020, 10, 11348-11356.	1.7	4
25	Controlled heating and alignment platform enhances versatility in colloidal probe fabrication. Review of Scientific Instruments, 2020, 91, 013903.	0.6	0
26	Extending the fused-sphere SAFT-Î ³ Mie force field parameterization approach to poly(vinyl butyral) copolymers. Journal of Chemical Physics, 2020, 152, 044903.	1.2	6
27	Charge Density Gradients of Polymer Thin Film by Gaseous Phase Quaternization. ACS Macro Letters, 2020, 9, 158-162.	2.3	2
28	Design of High Efficient Midâ€Wavelength Infrared Polarizer on ORMOCHALC Polymer. Macromolecular Materials and Engineering, 2020, 305, 2000033.	1.7	8
29	Application of a Laser Cutter to Pattern Wrinkles on Polymer Films. ACS Applied Polymer Materials, 2020, 2, 1848-1855.	2.0	5
30	Attributes, Fabrication, and Applications of Galliumâ€Based Liquid Metal Particles. Advanced Science, 2020, 7, 2000192.	5.6	246
31	Spontaneous Degrafting of Weak and Strong Polycationic Brushes in Aqueous Buffer Solutions. Macromolecules, 2019, 52, 6192-6200.	2.2	17
32	Hydrogel/Elastomer Laminates Bonded via Fabric Interphases for Stimuli-Responsive Actuators. Matter, 2019, 1, 674-689.	5.0	74
33	Determining Water Sorption and Desorption in Thin Hydrophilic Polymer Films by Thermal Treatment. ACS Applied Polymer Materials, 2019, 1, 2495-2502.	2.0	7
34	Computer Simulation of Surfaceâ€Initiated Controlled Radical Polymerization: Effect of Freeâ€Monomer Model on Brush Properties. Macromolecular Theory and Simulations, 2019, 28, 1900033.	0.6	8
35	Generating Surface-Anchored Zwitterionic Networks and Studying Their Resistance to Bovine Serum Albumin Adsorption. ACS Applied Polymer Materials, 2019, 1, 3323-3333.	2.0	10
36	Liquid Metal Nanoparticles as Initiators for Radical Polymerization of Vinyl Monomers. ACS Macro Letters, 2019, 8, 1522-1527.	2.3	109

#	Article	IF	CITATIONS
37	Mechanochemical Degrafting of a Surface-Tethered Poly(acrylic acid) Brush Promoted Etching of Its Underlying Silicon Substrate. Langmuir, 2019, 35, 13693-13699.	1.6	1
38	Light-Induced Structuring of Photosensitive Polymer Brushes. ACS Applied Polymer Materials, 2019, 1, 3017-3026.	2.0	11
39	Thermally driven directional free-radical polymerization in confined channels. Polymer Chemistry, 2019, 10, 920-925.	1.9	2
40	Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene). Journal of Chemical Physics, 2019, 150, 034901.	1.2	15
41	Influence of surface topography attributes on settlement and adhesion of natural and synthetic species. Soft Matter, 2019, 15, 4045-4067.	1.2	39
42	Shrink Films Get a Grip. ACS Applied Polymer Materials, 2019, 1, 1088-1095.	2.0	10
43	Toughening stretchable fibers via serial fracturing of a metallic core. Science Advances, 2019, 5, eaat4600.	4.7	52
44	Thermo-mechanical transformation of shape memory polymers from initially flat discs to bowls and saddles. Smart Materials and Structures, 2019, 28, 045011.	1.8	21
45	Thermally Activated One-Pot, Simultaneous Radical and Condensation Reactions Generate Surface-Anchored Network Layers from Common Polymers. Macromolecules, 2019, 52, 700-707.	2.2	9
46	Adsorption of size-polydisperse particles on sinusoidally corrugated surfaces. Molecular Simulation, 2018, 44, 494-506.	0.9	3
47	Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene- <i>alt</i> -maleic anhydride) in aqueous solutions. Nanoscale, 2018, 10, 19871-19878.	2.8	98
48	Kinetic Study of Degrafting Poly(methyl methacrylate) Brushes from Flat Substrates by Tetrabutylammonium Fluoride. Macromolecules, 2018, 51, 10237-10245.	2.2	13
49	Shape memory polymers for selfâ€folding via compression of thermoplastic sheets. Journal of Applied Polymer Science, 2018, 135, 46889.	1.3	6
50	Visualization of Mechanochemically-Assisted Degrafting of Surface-Tethered Poly(Acrylic Acid) Brushes. ACS Macro Letters, 2018, 7, 609-613.	2.3	8
51	Fabrication of Flexible Hydrogel Sheets Featuring Periodically Spaced Circular Holes with Continuously Adjustable Size in Real Time. ACS Applied Materials & Interfaces, 2018, 10, 30844-30851.	4.0	5
52	Phase Behavior and Self-Assembly of Perfectly Sequence-Defined and Monodisperse Multiblock Copolypeptides. Biomacromolecules, 2017, 18, 599-609.	2.6	47
53	Controllable curvature from planar polymer sheets in response to light. Soft Matter, 2017, 13, 2299-2308.	1.2	45
54	Shape-transformable liquid metal nanoparticles in aqueous solution. Chemical Science, 2017, 8, 3832-3837.	3.7	181

#	Article	IF	CITATIONS
55	Effect of Network Density in Surface-Anchored Poly(<i>N</i> -isopropylacrylamide) Hydrogels on Adsorption of Fibrinogen. Langmuir, 2017, 33, 1974-1983.	1.6	19
56	Sequential self-folding of polymer sheets. Science Advances, 2017, 3, e1602417.	4.7	254
57	Further insight into the mechanism of poly(styrene-co -methyl methacrylate) microsphere formation. Journal of Polymer Science Part A, 2017, 55, 2249-2259.	2.5	3
58	A fully coupled thermoâ€viscoelastic finite element model for selfâ€folding shape memory polymer sheets. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1207-1219.	2.4	21
59	Sensors: Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers (Adv. Funct. Mater. 20/2017). Advanced Functional Materials, 2017, 27, .	7.8	3
60	Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers. Advanced Functional Materials, 2017, 27, 1605630.	7.8	257
61	Enhanced Stability of Surface-Tethered Diblock Copolymer Brushes with a Neutral Polymer Block and a Weak Polyelectrolyte Block: Effects of Molecular Weight and Hydrophobicity of the Neutral Block. Macromolecules, 2017, 50, 8580-8587.	2.2	21
62	Salt-Induced Aggregation of Negatively Charged Gold Nanoparticles Confined in a Polymer Brush Matrix. Macromolecules, 2017, 50, 7333-7343.	2.2	61
63	Vacuum filling of complex microchannels with liquid metal. Lab on A Chip, 2017, 17, 3043-3050.	3.1	169
64	Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets. Journal of Applied Physics, 2017, 122, .	1.1	11
65	Design and Fabrication of Wettability Gradients with Tunable Profiles through Degrafting Organosilane Layers from Silica Surfaces by Tetrabutylammonium Fluoride. Langmuir, 2017, 33, 14556-14564.	1.6	10
66	"Grafting through―polymerization involving surfaceâ€bound monomers. Journal of Polymer Science Part A, 2016, 54, 263-274.	2.5	31
67	Surface-Anchored Poly(<i>N</i> -isopropylacrylamide) Orthogonal Gradient Networks. Macromolecules, 2016, 49, 5076-5083.	2.2	16
68	Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes. ACS Applied Materials & Interfaces, 2016, 8, 19175-19184.	4.0	39
69	Amidation of Polyesters Is Slow in Nonaqueous Solvents: Efficient Amidation of Poly(ethylene) Tj ETQq1 1 0.7843 ACS Applied Materials & Interfaces, 2016, 8, 35641-35649.	14 rgBT / 4.0	Overlock 10 27
70	Swelling of Hydrophilic Polymer Brushes by Water and Alcohol Vapors. Macromolecules, 2016, 49, 4316-4329.	2.2	37
71	Drawing liquid metal wires at room temperature. Extreme Mechanics Letters, 2016, 7, 55-63.	2.0	31
72	Targeted Mutagenesis and Combinatorial Library Screening Enables Control of Protein Orientation on Surfaces and Increased Activity of Adsorbed Proteins. Langmuir, 2016, 32, 8660-8667.	1.6	4

#	Article	IF	CITATIONS
73	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. Analytical and Bioanalytical Chemistry, 2016, 408, 1829-1841.	1.9	12
74	Effect of gold nanoparticle hydrophobicity on thermally induced color change of PNIPAM brush/gold nanoparticle hybrids. Polymer, 2016, 98, 454-463.	1.8	21
75	Multipurpose Polymeric Coating for Functionalizing Inert Polymer Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 5694-5705.	4.0	9
76	Self-Folding of Thick Polymer Sheets Using Gradients of Heat. Journal of Mechanisms and Robotics, 2016, 8, .	1.5	21
77	Polymer brushes modified by photosensitive azobenzene containing polyamines. Polymer, 2016, 98, 421-428.	1.8	25
78	"2D or not 2D― Shape-programming polymer sheets. Progress in Polymer Science, 2016, 52, 79-106.	11.8	292
79	Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising CuPc/C ₆₀ Bilayer Laminates. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1251-1261.	1.4	3
80	Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. Small, 2015, 11, 6397-6403.	5.2	234
81	Polymer Brush/Metal Nanoparticle Hybrids for Optical Sensor Applications: from Self-Assembly to Tailored Functions and Nanoengineering. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1089-1117.	1.4	22
82	Expanding the Polymer Mechanochemistry Toolbox through Surface-Initiated Polymerization. ACS Macro Letters, 2015, 4, 636-639.	2.3	58
83	On-Demand Degrafting and the Study of Molecular Weight and Grafting Density of Poly(methyl) Tj ETQq1 1 0.7	'84314 rgB ⁻ 1.6	T /Qverlock
84	Direct Measurement of Molecular Weight and Grafting Density by Controlled and Quantitative Degrafting of Surface-Anchored Poly(methyl methacrylate). ACS Macro Letters, 2015, 4, 251-254.	2.3	55
85	Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition. Journal of Physical Chemistry B, 2015, 119, 10348-10358.	1.2	38
86	Instability of Surface-Grafted Weak Polyacid Brushes on Flat Substrates. Macromolecules, 2015, 48, 5677-5687.	2.2	27
87	Film-Stabilizing Attributes of Polymeric Core–Shell Nanoparticles. ACS Nano, 2015, 9, 7940-7949.	7.3	10
88	Proteinlike Copolymers as Encapsulating Agents for Small-Molecule Solutes. Langmuir, 2015, 31, 3518-3526.	1.6	9
89	Making polymer brush photosensitive with azobenzene containing surfactants. Polymer, 2015, 79, 65-72.	1.8	34
90	Creating surface patterns of polymer brushes by degrafting via tetrabutyl ammonium fluoride. RSC Advances, 2015, 5, 86120-86125.	1.7	10

#	Article	IF	CITATIONS
91	Self-folding of polymer sheets using microwaves and graphene ink. RSC Advances, 2015, 5, 89254-89261.	1.7	40
92	Modelling of shape memory polymer sheets that self-fold in response to localized heating. Soft Matter, 2015, 11, 7827-7834.	1.2	36
93	Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release. ACS Applied Materials & Interfaces, 2015, 7, 25586-25591.	4.0	63
94	Beyond microstructures: Using the Kerr Effect to characterize the macrostructures of synthetic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 155-166.	2.4	13
95	Toward the Development of a Versatile Functionalized Silicone Coating. ACS Applied Materials & Interfaces, 2014, 6, 22544-22552.	4.0	16
96	Self-Folding Origami Microstrip Antennas. IEEE Transactions on Antennas and Propagation, 2014, 62, 5416-5419.	3.1	106
97	Adsorption of Multiple Spherical Particles onto Sinusoidally Corrugated Substrates. Langmuir, 2014, 30, 9407-9417.	1.6	7
98	Brush/Gold Nanoparticle Hybrids: Effect of Grafting Density on the Particle Uptake and Distribution within Weak Polyelectrolyte Brushes. Langmuir, 2014, 30, 13033-13041.	1.6	54
99	Swelling of Polyelectrolyte and Polyzwitterion Brushes by Humid Vapors. Journal of the American Chemical Society, 2014, 136, 12737-12745.	6.6	86
100	Evolution of Homopolymer Thin-Film Instability on Surface-Anchored Diblock Copolymers Varying in Composition. Langmuir, 2014, 30, 11689-11695.	1.6	6
101	Three-dimensional folding of pre-strained polymer sheets <i>via</i> absorption of laser light. Journal of Applied Physics, 2014, 115, .	1.1	58
102	In-plane deformation of shape memory polymer sheets programmed using only scissors. Polymer, 2014, 55, 5948-5952.	1.8	9
103	Adsorption of "soft―spherical particles onto sinusoidally-corrugated substrates. Soft Matter, 2014, 10, 7452-7458.	1.2	8
104	Simple geometric model to describe self-folding of polymer sheets. Physical Review E, 2014, 89, 042601.	0.8	30
105	Effect of ultraviolet/ozone treatment on the surface and bulk properties of poly(dimethyl siloxane) and poly(vinylmethyl siloxane) networks. Polymer, 2014, 55, 3107-3119.	1.8	59
106	Thiol-containing polymeric embedding materials for nanoskiving. Journal of Materials Chemistry C, 2013, 1, 121-130.	2.7	18
107	Opto-Mechanical Scission of Polymer Chains in Photosensitive Diblock-Copolymer Brushes. Langmuir, 2013, 29, 13967-13974.	1.6	43
108	On the Surface Interactions of Proteins with Lignin. ACS Applied Materials & Interfaces, 2013, 5, 199-206.	4.0	71

#	Article	IF	CITATIONS
109	Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering. Soft Matter, 2013, 9, 7797.	1.2	32
110	Self-assembly fronts in collision: impinging ordering organosilane layers. Soft Matter, 2013, 9, 2493.	1.2	3
111	Microfluidic channels fabricated from poly(vinylmethylsiloxane) networks that resist swelling by organic solvents. Lab on A Chip, 2013, 13, 4317.	3.1	6
112	Generation and Properties of Antibacterial Coatings Based on Electrostatic Attachment of Silver Nanoparticles to Protein-Coated Polypropylene Fibers. ACS Applied Materials & Interfaces, 2013, 5, 5298-5306.	4.0	66
113	Effect of Protein-like Copolymers Composition on the Phase Separation Dynamics of a Polymer Blend: A Monte Carlo Simulation. Macromolecules, 2013, 46, 4207-4214.	2.2	8
114	Computer Simulation of Template Polymerization Using a Controlled Reaction Scheme. Macromolecules, 2013, 46, 2474-2484.	2.2	13
115	Elastomeric microparticles for acoustic mediated bioseparations. Journal of Nanobiotechnology, 2013, 11, 22.	4.2	199
116	Water-Wettable Polypropylene Fibers by Facile Surface Treatment Based on Soy Proteins. ACS Applied Materials & Interfaces, 2013, 5, 6541-6548.	4.0	37
117	Progress in Computer Simulation of Bulk, Confined, and Surfaceâ€initiated Polymerizations. Macromolecular Theory and Simulations, 2013, 22, 8-30.	0.6	25
118	Interfacial stabilization of bilayered nanolaminates by asymmetric block copolymers. Applied Physics Letters, 2012, 100, 101602.	1.5	3
119	Determining the Polydispersity in Chemical Composition and Monomer Sequence Distribution in Random Copolymers Prepared by Postpolymerization Modification of Homopolymers. ACS Macro Letters, 2012, 1, 1128-1133.	2.3	5
120	Responsive PET Nano/Microfibers via Surface-Initiated Polymerization. ACS Applied Materials & Interfaces, 2012, 4, 59-64.	4.0	31
121	Generation of functional PET microfibers through surface-initiated polymerization. Journal of Materials Chemistry, 2012, 22, 5855.	6.7	53
122	Self-folding of polymer sheets using local light absorption. Soft Matter, 2012, 8, 1764-1769.	1.2	466
123	Phase behavior of gradient copolymer solutions: a Monte Carlo simulation study. Soft Matter, 2012, 8, 6471.	1.2	24
124	Oligomer Orientation in Vapor-Molecular-Layer-Deposited Alkyl-Aromatic Polyamide Films. Langmuir, 2012, 28, 10464-10470.	1.6	32
125	Computer Simulation of Concurrent Bulk- and Surface-Initiated Living Polymerization. Macromolecules, 2012, 45, 2128-2137.	2.2	60
126	Formation of Polyampholyte Brushes via Controlled Radical Polymerization and Their Assembly in Solution. Langmuir, 2012, 28, 872-882.	1.6	37

#	Article	IF	CITATIONS
127	Adsorption of Glycinin and β-Conglycinin on Silica and Cellulose: Surface Interactions as a Function of Denaturation, pH, and Electrolytes. Biomacromolecules, 2012, 13, 387-396.	2.6	25
128	Experimental and Computational Study of the Effect of Alcohols on the Solution and Adsorption Properties of a Nonionic Symmetric Triblock Copolymer. Journal of Physical Chemistry B, 2012, 116, 1289-1298.	1.2	10
129	Creating Functional Materials by Chemical and Physical Functionalization of Silicone Elastomer Networks. Advances in Silicon Science, 2012, , 59-94.	0.6	1
130	The effect of confinement on thermal frontal polymerization. Polymer Chemistry, 2012, 3, 3243.	1.9	11
131	Surface-Bound Gradients for Studies of Soft Materials Behavior. Annual Review of Materials Research, 2012, 42, 435-468.	4.3	83
132	Time Dependence of Lysozyme Adsorption on End-Grafted Polymer Layers of Variable Grafting Density and Length. Langmuir, 2012, 28, 2122-2130.	1.6	19
133	Generation of Functional Coatings on Hydrophobic Surfaces through Deposition of Denatured Proteins Followed by Grafting from Polymerization. Biomacromolecules, 2012, 13, 1371-1382.	2.6	29
134	Surface-Initiated Polymerization by Means of Novel, Stable, Non-Ester-Based Radical Initiator. Macromolecules, 2012, 45, 3802-3815.	2.2	52
135	Formation and Antifouling Properties of Amphiphilic Coatings on Polypropylene Fibers. Biomacromolecules, 2012, 13, 3769-3779.	2.6	53
136	Influence of gradient strength and composition profile on the onset of the cloud point transition in hydroxyethyl methacrylate/dimethylaminoethyl methacrylate gradient copolymers. Polymer, 2012, 53, 1131-1137.	1.8	26
137	Applications of surface-grafted macromolecules derived from post-polymerization modification reactions. Progress in Polymer Science, 2012, 37, 871-906.	11.8	136
138	Charge- and temperature-dependent interactions between anionic poly(N-isopropylacrylamide) polymers in solution and a cationic surfactant at the water/air interface. Soft Matter, 2011, 7, 8498.	1.2	6
139	Poly(vinylmethylsiloxane) Elastomer Networks as Functional Materials for Cell Adhesion and Migration Studies. Biomacromolecules, 2011, 12, 1265-1271.	2.6	17
140	Block copolymer self-organization vs. interfacial modification in bilayered thin-film laminates. Soft Matter, 2011, 7, 3268.	1.2	14
141	Metallothionein-inspired prototype of molecular pincer. Chemical Communications, 2011, 47, 8067.	2.2	2
142	Adsorption of PEO–PPO–PEO Triblock Copolymers with End-Capped Cationic Chains of Poly(2-dimethylaminoethyl methacrylate). Langmuir, 2011, 27, 9769-9780.	1.6	22
143	Poly(2-hydroxyethyl methacrylate) for Enzyme Immobilization: Impact on Activity and Stability of Horseradish Peroxidase. Biomacromolecules, 2011, 12, 1822-1830.	2.6	54
144	Multilayers of Weak Polyelectrolytes of Low and High Molecular Mass Assembled on Polypropylene and Self-Assembled Hydrophobic Surfaces. Langmuir, 2011, 27, 4541-4550.	1.6	16

#	Article	IF	CITATIONS
145	Photochromic materials with tunable color and mechanical flexibility. Soft Matter, 2011, 7, 3766-3774.	1.2	21
146	Simultaneous Bulk- and Surface-Initiated Controlled Radical Polymerization from Planar Substrates. Journal of the American Chemical Society, 2011, 133, 17567-17569.	6.6	106
147	Effect of copolymer compatibilizer sequence on the dynamics of phase separation of immiscible binary homopolymer blends. Soft Matter, 2011, 7, 10620.	1.2	16
148	Phase Separation Dynamics for a Polymer Blend Compatibilized by Protein-like Copolymers: A Monte Carlo Simulation. Macromolecules, 2011, 44, 8284-8293.	2.2	14
149	Cloud point suppression in dilute solutions of model gradient copolymers with prespecified composition profiles. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 629-637.	2.4	24
150	Formation of silicone elastomer networks films with gradients in modulus. Polymer, 2010, 51, 763-773.	1.8	29
151	ATRP of 2â€vinylpyridine and <i>tert</i> â€butyl acrylate mixtures giving precursors of polyampholytes. Journal of Polymer Science Part A, 2010, 48, 735-741.	2.5	8
152	Polymer Nanotubules Obtained by Layerâ€byâ€Layer Deposition within AAOâ€Membrane Templates with Subâ€100â€nm Pore Diameters. Small, 2010, 6, 2683-2689.	5.2	32
153	Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9, 101-113.	13.3	5,007
154	Glass Transition Temperatures of Styrene/4-BrStyrene Copolymers with Variable Co-Monomer Compositions and Sequence Distributions. Macromolecules, 2010, 43, 6912-6914.	2.2	14
155	Temperature-Dependent Optical Properties of Gold Nanoparticles Coated with a Charged Diblock Copolymer and an Uncharged Triblock Copolymer. ACS Nano, 2010, 4, 1187-1201.	7.3	43
156	Simulation of Mechanically-Assembled Monolayers In Poor Solvent Using Discontinuous Molecular Dynamics. Macromolecules, 2010, 43, 3072-3080.	2.2	0
157	Computer Simulation of Controlled Radical Polymerization: Effect of Chain Confinement Due to Initiator Grafting Density and Solvent Quality in "Grafting From―Method. Macromolecules, 2010, 43, 9567-9577.	2.2	72
158	Investigating the Molecular Origins of Responsiveness in Functional Silicone Elastomer Networks. Macromolecules, 2010, 43, 5043-5051.	2.2	11
159	Surface and Friction Behavior of a Silicone Surfactant Adsorbed on Model Textiles Substrates. Industrial & Engineering Chemistry Research, 2010, 49, 8550-8557.	1.8	16
160	Controlling Comonomer Distribution in Random Copolymers by Chemical Coloring of Surface-Tethered Homopolymers: An Insight from Discontinuous Molecular Dynamics Simulation. Langmuir, 2010, 26, 8810-8820.	1.6	7
161	Protein-Like Copolymers (PLCs) as Compatibilizers for Homopolymer Blends. Macromolecules, 2010, 43, 5149-5157.	2.2	14
162	Adsorption of a Nonionic Symmetric Triblock Copolymer on Surfaces with Different Hydrophobicity. Langmuir, 2010, 26, 9565-9574.	1.6	63

#	Article	IF	CITATIONS
163	Neutron reflectometry of supported hybrid bilayers with inserted peptide. Soft Matter, 2010, 6, 862.	1.2	16
164	Rapid Removal of Organics and Oil Spills from Waters Using Silicone Rubber "Sponges― Journal of Dispersion Science and Technology, 2009, 30, 318-327.	1.3	27
165	Formation and Properties of Responsive Siloxaneâ€Based Polymeric Surfaces with Tunable Surface Reconstruction Kinetics. Advanced Functional Materials, 2009, 19, 460-469.	7.8	25
166	Discriminating Among Coâ€monomer Sequence Distributions in Random Copolymers Using Interaction Chromatography. Macromolecular Rapid Communications, 2009, 30, 1543-1548.	2.0	15
167	Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polymer Engineering and Science, 2009, 49, 2054-2061.	1.5	91
168	Modification of PET surfaces with self-assembled monolayers of organosilane precursors. Journal of Electron Spectroscopy and Related Phenomena, 2009, 172, 95-103.	0.8	16
169	Asphaltene Adsorption onto Self-Assembled Monolayers of Mixed Aromatic and Aliphatic Trichlorosilanes. Langmuir, 2009, 25, 6260-6269.	1.6	34
170	Design of Copolymers with Tunable Randomness Using Discontinuous Molecular Dynamics Simulation. Macromolecules, 2009, 42, 9063-9071.	2.2	12
171	Tuning Gold Nanoparticleâ^'Poly(2-hydroxyethyl methacrylate) Brush Interactions: From Reversible Swelling to Capture and Release. ACS Nano, 2009, 3, 807-818.	7.3	48
172	Asphaltene Adsorption onto Self-Assembled Monolayers of Alkyltrichlorosilanes of Varying Chain Length. ACS Applied Materials & Interfaces, 2009, 1, 1347-1357.	4.0	31
173	Effect of Comonomer Sequence Distribution on the Adsorption of Random Copolymers onto Impenetrable Flat Surfaces. Macromolecules, 2009, 42, 2843-2853.	2.2	40
174	Formation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption. Biointerphases, 2009, 4, FA33-FA44.	0.6	29
175	Development and Testing of Hierarchically Wrinkled Coatings for Marine Antifouling. ACS Applied Materials & Interfaces, 2009, 1, 1031-1040.	4.0	225
176	Reactive patterning via post-functionalization of polymer brushes utilizing disuccinimidyl carbonate activation to couple primary amines. Polymer, 2008, 49, 3770-3779.	1.8	52
177	Formation and properties of multivariant assemblies of surface-tethered diblock and triblock copolymers. Polymer, 2008, 49, 4837-4845.	1.8	22
178	Statistical copolymers of 2â€ (trimethylsilyloxy)ethyl methacrylate and methyl methacrylate synthesized by ATRP. Journal of Polymer Science Part A, 2008, 46, 1919-1923.	2.5	15
179	Simulation of Mechanically Assembled Monolayers and Polymers in Good Solvent Using Discontinuous Molecular Dynamics. Macromolecules, 2008, 41, 6573-6581.	2.2	4
180	Effect of Solvent Quality and Chain Confinement on the Kinetics of Polystyrene Bromination. Macromolecules, 2008, 41, 6719-6727.	2.2	25

#	Article	IF	CITATIONS
181	Surface-Bound Soft Matter Gradients. Langmuir, 2008, 24, 2294-2317.	1.6	327
182	Autophobicity-Driven Surface Segregation and Patterning of Coreâ^'Shell Microgel Nanoparticles. Nano Letters, 2008, 8, 3010-3016.	4.5	12
183	Effect of Substrate Geometry on Polymer Molecular Weight and Polydispersity during Surface-Initiated Polymerization. Macromolecules, 2008, 41, 4856-4865.	2.2	98
184	Characterization of Monolayer Formation on Aluminum-Doped Zinc Oxide Thin Films. Langmuir, 2008, 24, 433-440.	1.6	21
185	Biological and Synthetic Self-Cleaning Surfaces. MRS Bulletin, 2008, 33, 742-746.	1.7	144
186	Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid. Industrial & Engineering Chemistry Research, 2008, 47, 502-508.	1.8	69
187	Propagating waves of self-assembly in organosilane monolayers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10324-10329.	3.3	42
188	Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates. Nanotechnology, 2007, 18, 025301.	1.3	32
189	Influence of indium–tin oxide surface structure on the ordering and coverage of carboxylic acid and thiol monolayers. Journal Physics D: Applied Physics, 2007, 40, 4212-4221.	1.3	38
190	Theoretical study of kinetics of zipping phenomena in biomimetic polymers. Physical Review E, 2007, 76, 011915.	0.8	1
191	Manipulating Siloxane Surfaces: Obtaining the Desired Surface Function via Engineering Design. ACS Symposium Series, 2007, , 222-255.	0.5	3
192	Phase Behavior and Charge Regulation of Weak Polyelectrolyte Grafted Layers. Physical Review Letters, 2007, 98, 018302.	2.9	96
193	Computer simulation study of probe-target hybridization in model DNA microarrays: Effect of probe surface density and target concentration. Journal of Chemical Physics, 2007, 127, 144912.	1.2	41
194	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates:  1. Experiment. Macromolecules, 2007, 40, 8756-8764.	2.2	252
195	Obtaining Concentration Profiles from Computer Simulation Structure Factors. Macromolecules, 2007, 40, 2629-2632.	2.2	16
196	Study of the Packing Density and Molecular Orientation of Bimolecular Self-Assembled Monolayers of Aromatic and Aliphatic Organosilanes on Silica. Langmuir, 2007, 23, 673-683.	1.6	28
197	Surface Properties of Poly[2-(perfluorooctyl)ethyl acrylate] Deposited from Liquid CO2 High-Pressure Free Meniscus Coating. Macromolecules, 2007, 40, 588-597.	2.2	24
198	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates:  2. Theory. Macromolecules, 2007, 40, 8765-8773.	2.2	149

#	Article	IF	CITATIONS
199	Design of random copolymers with statistically controlled monomer sequence distributions via Monte Carlo simulations. Journal of Chemical Physics, 2006, 125, 014902.	1.2	11
200	Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality. Chemistry of Materials, 2006, 18, 2357-2363.	3.2	34
201	Computer Simulation Study of Molecular Recognition in Model DNA Microarrays. Biophysical Journal, 2006, 91, 2227-2236.	0.2	30
202	Study of Kinetics and Macroinitiator Efficiency in Surface-Initiated Atom-Transfer Radical Polymerization. Macromolecules, 2006, 39, 9049-9056.	2.2	56
203	In Silico Polymerization:Â Computer Simulation of Controlled Radical Polymerization in Bulk and on Flat Surfaces. Macromolecules, 2006, 39, 7157-7169.	2.2	76
204	Effects of Synthetic Amphiphilic α-Helical Peptides on the Electrochemical and Structural Properties of Supported Hybrid Bilayers on Gold. Langmuir, 2006, 22, 1919-1927.	1.6	8
205	Tunable Instability Mechanisms of Polymer Thin Films by Molecular Self-Assembly. Langmuir, 2006, 22, 8642-8645.	1.6	11
206	Formation Mechanisms and Properties of Semifluorinated Molecular Gradients on Silica Surfaces. Langmuir, 2006, 22, 8532-8541.	1.6	49
207	Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 2006, 22, 339-360.	0.8	1,028
208	Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter, 2006, 2, 310.	1.2	773
209	Combinatorial study of nanoparticle dispersion in surface-grafted macromolecular gradients. Applied Surface Science, 2006, 252, 2549-2554.	3.1	55
210	Salt-Induced Depression of Lower Critical Solution Temperature in a Surface-Grafted Neutral Thermoresponsive Polymer. Macromolecular Rapid Communications, 2006, 27, 697-701.	2.0	86
211	Templating Surfaces with Gradient Assemblies. Journal of Adhesion, 2005, 81, 417-435.	1.8	33
212	Rapid formation of soft hydrophilic silicone elastomer surfaces. Polymer, 2005, 46, 9329-9341.	1.8	60
213	Using spectroscopic ellipsometry for quick prediction of number density of nanoparticles bound to non-transparent solid surfaces. Surface Science, 2005, 596, 187-196.	0.8	28
214	Nested self-similar wrinkling patterns in skins. Nature Materials, 2005, 4, 293-297.	13.3	710
215	Nanomechanics of opposing glycosaminoglycan macromolecules. Journal of Biomechanics, 2005, 38, 1789-1797.	0.9	40
216	Orthogonal surface-grafted polymer gradients: A versatile combinatorial platform. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3384-3394.	2.4	54

#	Article	IF	CITATIONS
217	Designing Pattern-Recognition Surfaces for Selective Adsorption of Copolymer Sequences Using Lattice Monte Carlo Simulation. Physical Review Letters, 2005, 94, 078103.	2.9	42
218	Nonequilibrium Model for Sorption and Swelling of Bulk Glassy Polymer Films with Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 10299-10313.	2.2	26
219	Evolution of Surface Morphologies in Multivariant Assemblies of Surface-Tethered Diblock Copolymers after Selective Solvent Treatment. Langmuir, 2005, 21, 11552-11555.	1.6	60
220	Creating Responsive Surfaces with Tailored Wettability Switching Kinetics and Reconstruction Reversibility. Journal of the American Chemical Society, 2005, 127, 17610-17611.	6.6	68
221	Computer Simulation of Block Copolymer/Nanoparticle Composites. Macromolecules, 2005, 38, 3007-3016.	2.2	135
222	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates. , 2005, , 287-315.		11
223	Assembly of Nanoparticles using Surface-Grafted Orthogonal Polymer Gradients. Macromolecular Rapid Communications, 2004, 25, 270-274.	2.0	70
224	Mapping Surface Chemistry and Molecular Orientation with Combinatorial Near-Edge X-Ray Absorption Fine Structure Spectroscopy. Macromolecular Rapid Communications, 2004, 25, 141-149.	2.0	26
225	Monte Carlo Simulations of Copolymer Adsorption at Planar Chemically Patterned Surfaces: Effect of Interfacial Interaction. Macromolecular Theory and Simulations, 2004, 13, 219-229.	0.6	18
226	Fast Directed Motion of "Fakir―Droplets. Langmuir, 2004, 20, 9893-9896.	1.6	41
227	Dewetting Behavior of a Block Copolymer/Homopolymer Thin Film on an Immiscible Homopolymer Substrate. Langmuir, 2004, 20, 8659-8667.	1.6	18
228	Dewetting of Star Nanogel/Homopolymer Blends from an Immiscible Homopolymer Substrate. Macromolecules, 2004, 37, 7857-7860.	2.2	11
228 229	Dewetting of Star Nanogel/Homopolymer Blends from an Immiscible Homopolymer Substrate. Macromolecules, 2004, 37, 7857-7860. Formation of Grafted Macromolecular Assemblies with a Gradual Variation of Molecular Weight on Solid Substrates. Macromolecules, 2003, 36, 3449-3451.	2.2 2.2	11 109
	Macromolecules, 2004, 37, 7857-7860. Formation of Grafted Macromolecular Assemblies with a Gradual Variation of Molecular Weight on		
229	Macromolecules, 2004, 37, 7857-7860. Formation of Grafted Macromolecular Assemblies with a Gradual Variation of Molecular Weight on Solid Substrates. Macromolecules, 2003, 36, 3449-3451. Formation and Properties of Anchored Polymers with a Gradual Variation of Grafting Densities on	2.2	109
229 230	 Macromolecules, 2004, 37, 7857-7860. Formation of Grafted Macromolecular Assemblies with a Gradual Variation of Molecular Weight on Solid Substrates. Macromolecules, 2003, 36, 3449-3451. Formation and Properties of Anchored Polymers with a Gradual Variation of Grafting Densities on Flat Substrates. Macromolecules, 2003, 36, 2448-2453. Formation of surface-grafted copolymer brushes with continuous composition gradients. Chemical 	2.2 2.2	109 190
229 230 231	 Macromolecules, 2004, 37, 7857-7860. Formation of Grafted Macromolecular Assemblies with a Gradual Variation of Molecular Weight on Solid Substrates. Macromolecules, 2003, 36, 3449-3451. Formation and Properties of Anchored Polymers with a Gradual Variation of Grafting Densities on Flat Substrates. Macromolecules, 2003, 36, 2448-2453. Formation of surface-grafted copolymer brushes with continuous composition gradients. Chemical Communications, 2003, , 1350. Development of High-Throughput substrates for Generating Two-Dimensional Nanoparticles Assemblies and for Screening Protein Adsorption. Materials Research Society Symposia Proceedings, 	2.2 2.2 2.2	109 190 57

#	Article	IF	CITATIONS
235	Controlling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients. Nanotechnology, 2003, 14, 1145-1152.	1.3	123
236	Accounting for Auger yield energy loss for improved determination of molecular orientation using soft x-ray absorption spectroscopy. Journal of Applied Physics, 2002, 92, 7070-7079.	1.1	56
237	Computer simulation of copolymer phase behavior. Journal of Chemical Physics, 2002, 117, 10329-10338.	1.2	76
238	Formation of Self-Assembled Monolayers of Semifluorinated and Hydrocarbon Chlorosilane Precursors on Silica Surfaces from Liquid Carbon Dioxide. Langmuir, 2002, 18, 6170-6179.	1.6	24
239	Combinatorial Study of the Mushroom-to-Brush Crossover in Surface Anchored Polyacrylamide. Journal of the American Chemical Society, 2002, 124, 9394-9395.	6.6	296
240	Molecular Orientation and Grafting Density in Semifluorinated Self-Assembled Monolayers of Mono-, Di-, and Trichloro Silanes on Silica Substrates. Langmuir, 2002, 18, 9307-9311.	1.6	74
241	Fabricating Planar Nanoparticle Assemblies with Number Density Gradients. Langmuir, 2002, 18, 5640-5643.	1.6	102
242	Copolymer Adsorption on Planar Chemically Heterogeneous Substrates: The Interplay between the Monomer Sequence Distribution and Interaction Energies. Macromolecular Theory and Simulations, 2002, 11, 481.	0.6	20
243	Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment. Journal of Colloid and Interface Science, 2002, 254, 306-315.	5.0	670
244	Application of ion scattering techniques to characterize polymer surfaces and interfaces. Materials Science and Engineering Reports, 2002, 38, 107-180.	14.8	100
245	Polymer Chain Relaxation:Â Surface Outpaces Bulk. Macromolecules, 2001, 34, 5081-5082.	2.2	94
246	Preparing High-Density Polymer Brushes by Mechanically Assisted Polymer Assembly. Macromolecules, 2001, 34, 684-686.	2.2	46
247	Processing of Polyamide 11 with Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2001, 40, 5570-5577.	1.8	25
248	Tuning the Surface Properties of Elastomers Using Hydrocarbon-Based Mechanically Assembled Monolayers. Materials Research Society Symposia Proceedings, 2001, 710, 1.	0.1	3
249	Monte Carlo Simulations of Copolymer Adsorption from Copolymer / Homopolymer Melts at Planar Chemically Patterned Surfaces. Materials Research Society Symposia Proceedings, 2001, 710, 1.	0.1	0
250	Self-consistent field study of copolymer adsorption at planar chemically â€~rough' surfaces: an interplay between the substrate chemical pattern and copolymer sequence distribution. Advances in Colloid and Interface Science, 2001, 94, 105-134.	7.0	22
251	Copolymer adsorption on planar substrates with a random distribution of chemical heterogeneities. Journal of Chemical Physics, 2001, 115, 4873-4882.	1.2	23
252	Copolymer-assisted generation of three-dimensional patterns by replicating two-dimensional substrate motifs. Physical Review E, 2001, 63, 022601.	0.8	18

#	Article	IF	CITATIONS
253	Temperature Dependence of Molecular Orientation on the Surfaces of Semifluorinated Polymer Thin Films. Langmuir, 2000, 16, 1993-1997.	1.6	83
254	Effect of Changing Molecular End Groups on Surface Properties:Â Synthesis and Characterization of Poly(styrene-b-semifluorinated isoprene) Block Copolymers with â^'CF2H End Groups. Macromolecules, 2000, 33, 8012-8019.	2.2	53
255	Molecular Orientation of Single and Two-Armed Monodendron Semifluorinated Chains on "Soft―and "Hard―Surfaces Studied Using NEXAFS. Macromolecules, 2000, 33, 6068-6077.	2.2	55
256	Surface Stability in Liquid-Crystalline Block Copolymers with Semifluorinated Monodendron Side Groups. Macromolecules, 2000, 33, 6106-6119.	2.2	110
257	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. Macromolecules, 2000, 33, 1882-1887.	2.2	115
258	Transfer of a chemical substrate pattern into an island-forming diblock copolymer film. Journal of Chemical Physics, 1999, 111, 11101-11110.	1.2	61
259	The interface between immiscible polymers studied by low-energy forward recoil spectrometry and neutron reflectivity. Polymer, 1999, 40, 4223-4228.	1.8	18
260	Surface Enrichment in a Miscible Random Copolymer Blend:  Influence of Polydispersity and Architecture. Macromolecules, 1999, 32, 4098-4105.	2.2	10
261	Wetting reversal transition in phaseâ€separated polymer mixtures. Macromolecular Symposia, 1999, 139, 77-85.	0.4	1
262	Effect of Molecular Weight on the Interfacial Excess, Tension, and Width in a Homopolymer/Binary Polymer Blend System. Macromolecules, 1998, 31, 870-878.	2.2	26
263	Wetting of Substrates with Phase-Separated Binary Polymer Mixtures. Physical Review Letters, 1997, 78, 4946-4949.	2.9	70
264	A self-consistent field study of the wetting transition in binary polymer blends. Journal of Chemical Physics, 1997, 106, 1257-1263.	1.2	7
265	Meanâ€field theory of the interface between a homopolymer and a binaryâ€polymer mixture. Journal of Chemical Physics, 1996, 105, 10134-10144.	1.2	7
266	Surface-Grafted Polymer Gradients: Formation, Characterization, and Applications. , 0, , 51-124.		116