Sean E Lawler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177321/publications.pdf

Version: 2024-02-01

85 papers 5,432 citations

33 h-index 98798 67 g-index

88 all docs 88 docs citations

88 times ranked 10141 citing authors

#	Article	IF	CITATIONS
1	MicroRNAs in cancer: biomarkers, functions and therapy. Trends in Molecular Medicine, 2014, 20, 460-469.	6.7	1,732
2	Oncolytic Viruses in Cancer Treatment. JAMA Oncology, 2017, 3, 841.	7.1	426
3	Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Science Advances, 2018, 4, eaar2766.	10.3	416
4	Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nature Communications, 2017, 8, 15623.	12.8	224
5	Extracellular Vesicles Modulate the Glioblastoma Microenvironment via a Tumor Suppression Signaling Network Directed by miR-1. Cancer Research, 2014, 74, 738-750.	0.9	197
6	Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics. Nature Protocols, 2018, 13, 2827-2843.	12.0	185
7	NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nature Medicine, 2012, 18, 1827-1834.	30.7	164
8	Depletion of Peripheral Macrophages and Brain Microglia Increases Brain Tumor Titers of Oncolytic Viruses. Cancer Research, 2007, 67, 9398-9406.	0.9	151
9	Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro-Oncology, 2008, 10, 690-699.	1.2	105
10	MicroRNAs and glioblastoma; the stem cell connection. Cell Death and Differentiation, 2010, 17, 221-228.	11,2	99
11	Pharmacological Modulation of the STING Pathway for Cancer Immunotherapy. Trends in Molecular Medicine, 2019, 25, 412-427.	6.7	92
12	The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nature Communications, 2019, 10, 442.	12.8	86
13	Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. Journal of Extracellular Vesicles, 2019, 8, 1588555.	12.2	86
14	USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nature Communications, 2014, 5, 3214.	12.8	83
15	Indirubins Decrease Glioma Invasion by Blocking Migratory Phenotypes in Both the Tumor and Stromal Endothelial Cell Compartments. Cancer Research, 2011, 71, 5374-5380.	0.9	65
16	Preclinical investigation of combined gene-mediated cytotoxic immunotherapy and immune checkpoint blockade in glioblastoma. Neuro-Oncology, 2018, 20, 225-235.	1.2	61
17	Perfluoroarene–Based Peptide Macrocycles to Enhance Penetration Across the Blood–Brain Barrier. Journal of the American Chemical Society, 2017, 139, 15628-15631.	13.7	60
18	The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radical Biology and Medicine, 2019, 130, 215-233.	2.9	59

#	Article	IF	CITATIONS
19	Histone deacetylase 6 inhibition enhances oncolytic viral replication in glioma. Journal of Clinical Investigation, 2015, 125, 4269-4280.	8.2	57
20	Prediction of clinical outcome in glioblastoma using a biologically relevant nineâ€microRNA signature. Molecular Oncology, 2015, 9, 704-714.	4.6	56
21	Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. Journal of Clinical Investigation, 2019, 129, 1671-1683.	8.2	52
22	Glucose-Based Regulation of miR-451/AMPK Signaling Depends on the OCT1 Transcription Factor. Cell Reports, 2015, 11, 902-909.	6.4	50
23	Automatic 3D Nonlinear Registration of Mass Spectrometry Imaging and Magnetic Resonance Imaging Data. Analytical Chemistry, 2019, 91, 6206-6216.	6.5	45
24	N-Acetylaspartate (NAA) and N-Acetylaspartylglutamate (NAAG) Promote Growth and Inhibit Differentiation of Glioma Stem-like Cells. Journal of Biological Chemistry, 2013, 288, 26188-26200.	3.4	44
25	STING activation promotes robust immune response and NK cellâ \in "mediated tumor regression in glioblastoma models. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	44
26	Tumor Interferon Signaling Is Regulated by a lncRNA INCR1 Transcribed from the PD-L1 Locus. Molecular Cell, 2020, 78, 1207-1223.e8.	9.7	43
27	<i>Plasmodium falciparum</i> erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood–brain barrier in cerebral malaria. Journal of Experimental Medicine, 2021, 218, .	8.5	43
28	Strategies of Eradicating Glioma Cells: A Multi-Scale Mathematical Model with MiR-451-AMPK-mTOR Control. PLoS ONE, 2015, 10, e0114370.	2.5	42
29	Cytomegalovirus and glioblastoma; controversies and opportunities. Journal of Neuro-Oncology, 2015, 123, 465-471.	2.9	41
30	Bi-specific molecule against EGFR and death receptors simultaneously targets proliferation and death pathways in tumors. Scientific Reports, 2017, 7, 2602.	3.3	40
31	BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma. Scientific Reports, 2016, 6, 20189.	3.3	38
32	Mechanisms of stearoyl CoA desaturase inhibitor sensitivity and acquired resistance in cancer. Science Advances, 2021, 7, .	10.3	38
33	Oncolytic Virus-Mediated Immunotherapy: A Combinatorial Approach for Cancer Treatment. Journal of Clinical Oncology, 2015, 33, 2812-2814.	1.6	36
34	Modeling Oncolytic Viral Therapy, Immune Checkpoint Inhibition, and the Complex Dynamics of Innate and Adaptive Immunity in Glioblastoma Treatment. Frontiers in Physiology, 2020, 11, 151.	2.8	33
35	Cell migration in paediatric glioma; characterisation and potential therapeutic targeting. British Journal of Cancer, 2015, 112, 693-703.	6.4	30
36	Anticancer activity of osmium(VI) nitrido complexes in patient-derived glioblastoma initiating cells and inÂvivo mouse models. Cancer Letters, 2018, 416, 138-148.	7.2	29

3

#	Article	IF	CITATIONS
37	NOTCH-Induced MDSC Recruitment after oHSV Virotherapy in CNS Cancer Models Modulates Antitumor Immunotherapy. Clinical Cancer Research, 2022, 28, 1460-1473.	7.0	26
38	Characterization of glioblastoma in an orthotopic mouse model with magnetic resonance elastography. NMR in Biomedicine, 2018, 31, e3840.	2.8	25
39	Proteomic Analysis Implicates Vimentin in Glioblastoma Cell Migration. Cancers, 2019, 11, 466.	3.7	24
40	Selective BCL-XL inhibition promotes apoptosis in combination with MLN8237 in medulloblastoma and pediatric glioblastoma cells. Neuro-Oncology, 2018, 20, 203-214.	1.2	22
41	A computationally inspired in-vivo approach identifies a link between amygdalar transcriptional heterogeneity, socialization and anxiety. Translational Psychiatry, 2019, 9, 336.	4.8	22
42	Current patent and clinical status of stimulator of interferon genes (STING) agonists for cancer immunotherapy. Pharmaceutical Patent Analyst, 2019, 8, 87-90.	1.1	20
43	A Platinum(IV) Prodrug—Perfluoroaryl Macrocyclic Peptide Conjugate Enhances Platinum Uptake in the Brain. Journal of Medicinal Chemistry, 2020, 63, 6741-6747.	6.4	20
44	FASN Is a Biomarker Enriched in Malignant Glioma-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 1931.	4.1	20
45	A validated microRNA profile with predictive potential in glioblastoma patients treated with bevacizumab. Molecular Oncology, 2016, 10, 1296-1304.	4.6	19
46	Immune Escape Mediated by Exosomal PD‣1 in Cancer. Advanced Biology, 2020, 4, e2000017.	3.0	19
47	In vitro screening of clinical drugs identifies sensitizers of oncolytic viral therapy in glioblastoma stem-like cells. Gene Therapy, 2015, 22, 947-959.	4.5	12
48	Prognostic microRNAs in high-grade glioma reveal a link to oligodendrocyte precursor differentiation. Oncoscience, 2014, 2, 252-262.	2.2	12
49	Inflammasome activation: from molecular mechanisms to autoinflammation. Clinical and Translational Immunology, 2022, 11 , .	3.8	12
50	Magnetic Resonance Elastography reveals effects of anti-angiogenic glioblastoma treatment on tumor stiffness and captures progression in an orthotopic mouse model. Cancer Imaging, 2020, 20, 35.	2.8	11
51	Targeting Glioblastoma Using a Novel Peptide Specific to a Deglycosylated Isoform of Brevican. Advanced Therapeutics, 2021, 4, 2000244.	3.2	11
52	The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses, 2021, 13, 1570.	3.3	11
53	Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses. ILAR Journal, 2016, 57, 63-72.	1.8	10
54	Collective invasion of glioma cells through OCT1 signalling and interaction with reactive astrocytes after surgery. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190390.	4.0	10

#	Article	IF	CITATIONS
55	Drug Resistance in Glioma Cells Induced by a Mesenchymal–Amoeboid Migratory Switch. Biomedicines, 2022, 10, 9.	3.2	10
56	Systemic high-dose dexamethasone treatment may modulate the efficacy of intratumoral viral oncolytic immunotherapy in glioblastoma models., 2022, 10, e003368.		9
57	Design of a Microfluidic Chip for Magnetic-Activated Sorting of One-Bead-One-Compound Libraries. ACS Combinatorial Science, 2016, 18, 271-278.	3.8	8
58	Novel non-nucleotidic STING agonists for cancer immunotherapy. Future Medicinal Chemistry, 2018, 10, 2767-2769.	2.3	7
59	Metabolic Reprogramming of Glioblastoma Cells during HCMV Infection Induces Secretome-Mediated Paracrine Effects in the Microenvironment. Viruses, 2022, 14, 103.	3.3	7
60	A Tumor-Homing Peptide Platform Enhances Drug Solubility, Improves Blood–Brain Barrier Permeability and Targets Glioblastoma. Cancers, 2022, 14, 2207.	3.7	7
61	Profiling cytotoxic microRNAs in pediatric and adult glioblastoma cells by high-content screening, identification, and validation of miR-1300. Oncogene, 2020, 39, 5292-5306.	5.9	5
62	GSK-3 Inhibition Is Cytotoxic in Glioma Stem Cells through Centrosome Destabilization and Enhances the Effect of Radiotherapy in Orthotopic Models. Cancers, 2021, 13, 5939.	3.7	5
63	Boosting Natural Killer Cell Therapies in Glioblastoma Multiforme Using Supramolecular Cationic Inhibitors of Heat Shock Protein 90. Frontiers in Molecular Biosciences, 2021, 8, 754443.	3.5	4
64	Shifting the balance of power? The combination of oncolytic virotherapy and immune checkpoint blockade for glioblastoma treatment. Neuro-Oncology, 2017, 19, 463-465.	1.2	2
65	Cytomegalovirus infection of glioblastoma cells leads to NF-κB dependent upregulation of the c-MET oncogenic tyrosine kinase. Cancer Letters, 2021, 513, 26-35.	7.2	2
66	DDIS-19. NOVEL PEPTIDE HOMING TO GLIOMA-SPECIFIC ISOFORM OF BREVICAN SELECTIVELY TARGETS MALIGNANT BRAIN TUMORS. Neuro-Oncology, 2017, 19, vi62-vi63.	1.2	1
67	DDIS-36. BTP-7, A NOVEL PEPTIDE FOR THERAPEUTIC TARGETING OF MALIGNANT BRAIN TUMORS. Neuro-Oncology, 2019, 21, vi71-vi71.	1.2	1
68	Cytomegalovirus Encephalopathy during Brain Tumor Irradiation. Clinical Cancer Research, 2020, 26, 3077-3078.	7.0	1
69	CTIM-13. PHASE 1 CLINICAL TRIAL OF ONCOLYTIC VIRAL IMMUNOTHERAPY WITH CAN-2409 + VALACYCLOVIR IN COMBINATION WITH NIVOLUMAB AND STANDARD OF CARE (SOC) IN NEWLY DIAGNOSED HIGH-GRADE GLIOMA (HGG). Neuro-Oncology, 2021, 23, vi52-vi52.	1.2	1
70	Self-assembled ruthenium and osmium nanosystems display potent anticancer profile by interfering with metabolic activity. Inorganic Chemistry Frontiers, 0, , .	6.0	1
71	Targeting Glioblastoma Invasion with GSK-3 inhibitors: Rapid Effects on the EMT Marker Vimentin. Canadian Journal of Neurological Sciences, 2014, 41, S1-S2.	0.5	O
72	ATPS-08DISCOVERY OF NOVEL GLIOMA-TARGETING PEPTIDES USING A HIGH-THROUGHPUT MICROFLUIDIC MAGNETIC-ACTIVATED SORTER. Neuro-Oncology, 2015, 17, v19.4-v19.	1.2	0

#	Article	IF	CITATIONS
73	IMPS-21EFFECT OF rQNestin 34.5 ONCOLYTIC HERPES VIRUS ON IMMUNE CHECKPOINT GENE EXPRESSION IN GLIOBLASTOMA CELLS AND EVALUATION OF THERAPEUTIC EFFICACY. Neuro-Oncology, 2015, 17, v117.4-v118.	1.2	0
74	IMMU-10. EXPRESSION OF PD-L2, IN GLIOBLASTOMA; IMPLICATIONS AS AÂBIOMARKER FOR IMMUNOTHERAPY. Neuro-Oncology, 2017, 19, vi114-vi114.	1.2	0
75	Characterisation of the anti-migratory activity of the 6-bromoindirubin-3'oxime (BIO) derivative VTIND42 in patient-derived GBM subpopulations. Neuro-Oncology, 2019, 21, iv6-iv7.	1.2	0
76	CSIG-19. CYTOMEGALOVIRUS INFECTION LEADS TO NF-kB DEPENDENT UPREGULATION OF c-MET AND MGMT IN GLIOBLASTOMA AND RESISTANCE TO TEMOZOLOMIDE IN VIVO. Neuro-Oncology, 2019, 21, vi48-vi48.	1.2	0
77	IMMU-46. EXAMINATION OF THE EFFECTS OF DEXAMETHASONE ON THE EFFICACY OF IMMUNOTHERAPY IN GLIOMA USING GENE-MEDIATED CYTOTOXIC IMMUNOTHERAPY. Neuro-Oncology, 2019, 21, vi129-vi129.	1.2	0
78	CBMT-05. GENETIC AND EPIGENETIC MECHANISMS REGULATING SCD INHIBITOR SENSITIVITY IN GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi33-vi33.	1,2	0
79	TMIC-23. A SEQUENTIAL IMAGING STRATEGY TO STUDY ONCOLYTIC VIRUS INFILTRATION, REPLICATION AND TUMOR MICROENVIRONMENTAL PERTURBATIONS, EX VIVO. Neuro-Oncology, 2019, 21, vi252-vi252.	1,2	0
80	EXTH-61. MODULATION OF THE IL-27 RECEPTOR SIGNALING PATHWAY IN GLIOBLASTOMA AND ONCOLYTIC VIROTHERAPY. Neuro-Oncology, 2021, 23, vi177-vi177.	1.2	0
81	EXTH-81. STING ACTIVATION PROMOTES ROBUST IMMUNE RESPONSE AND TUMOR REGRESSION IN GLIOBLASTOMA MODELS. Neuro-Oncology, 2021, 23, vi182-vi182.	1,2	0
82	DDRE-35. PRE-CLINICAL ASSESSMENT OF PPRX-1701, A NANOPARTICLE FORMULATION OF 6-BROMO-ACETOXIME, FOR THE TREATMENT OF GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi82-vi82.	1.2	0
83	DDRE-47. ASSESSMENT OF BRAIN PENETRANCE, BIODISTRIBUTION, AND EFFICACY OF PLATINUM (IV)-CONJUGATED FLUORINATED MACROCYCLIC CELL-PENETRATING PEPTIDES IN A MURINE GLIOBLASTOMA MODEL. Neuro-Oncology, 2021, 23, vi84-vi85.	1.2	0
84	CSIG-19. DISRUPTION OF DNA DAMAGE RESPONSE MODULATES THE EFFICACY OF LOCAL IMMUNOTHERAPIES IN EXPERIMENTAL GLIOMA. Neuro-Oncology, 2021, 23, vi37-vi37.	1,2	0
85	468â€Enhancers and repressors of immunotherapy: translational perspectives on gene-mediated cytotoxic immunotherapy in glioblastoma. , 2020, , .		O