Tom Vanden Berghe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
2	Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews Molecular Cell Biology, 2010, 11, 700-714.	16.1	1,941
3	Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 2019, 35, 830-849.	7.7	1,385
4	Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 2014, 15, 135-147.	16.1	1,373
5	The molecular machinery of regulated cell death. Cell Research, 2019, 29, 347-364.	5.7	1,373
6	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
7	Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16836-16841.	3.3	801
8	Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research, 2011, 21, 290-304.	5.7	710
9	Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1371-1387.	0.5	555
10	Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death and Disease, 2010, 1, e18-e18.	2.7	555
11	Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods, 2008, 44, 205-221.	1.9	546
12	Caspases in cell survival, proliferation and differentiation. Cell Death and Differentiation, 2007, 14, 44-55.	5.0	517
13	Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death and Differentiation, 2011, 18, 581-588.	5.0	499
14	RIP Kinase-Dependent Necrosis Drives Lethal Systemic Inflammatory Response Syndrome. Immunity, 2011, 35, 908-918.	6.6	490
15	Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death and Differentiation, 2010, 17, 922-930.	5.0	471
16	RIP Kinases at the Crossroads of Cell Death and Survival. Cell, 2009, 138, 229-232.	13.5	468
17	RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death and Differentiation, 2007, 14, 400-410.	5.0	432
18	The Role of the Kinases RIP1 and RIP3 in TNF-Induced Necrosis. Science Signaling, 2010, 3, re4.	1.6	407

TOM VANDEN BERGHE

#	Article	IF	CITATIONS
19	Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 2018, 128, 3341-3355.	3.9	406
20	Initiation and execution mechanisms of necroptosis: an overview. Cell Death and Differentiation, 2017, 24, 1184-1195.	5.0	404
21	Autophagy: for better or for worse. Cell Research, 2012, 22, 43-61.	5.7	373
22	Many stimuli pull the necrotic trigger, an overview. Cell Death and Differentiation, 2012, 19, 75-86.	5.0	340
23	Major cell death pathways at a glance. Microbes and Infection, 2009, 11, 1050-1062.	1.0	302
24	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	5.0	295
25	cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death and Differentiation, 2011, 18, 656-665.	5.0	294
26	Molecular Mechanisms and Pathophysiology of Necrotic Cell Death. Current Molecular Medicine, 2008, 8, 207-220.	0.6	283
27	Targeted Peptidecentric Proteomics Reveals Caspase-7 as a Substrate of the Caspase-1 Inflammasomes. Molecular and Cellular Proteomics, 2008, 7, 2350-2363.	2.5	276
28	Beclin1: A role in membrane dynamics and beyond. Autophagy, 2012, 8, 6-17.	4.3	262
29	Role of IL-1Â and the Nlrp3/caspase-1/IL-1Â axis in cigarette smoke-induced pulmonary inflammation and COPD. European Respiratory Journal, 2011, 38, 1019-1028.	3.1	221
30	TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death and Disease, 2011, 2, e230-e230.	2.7	195
31	Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death and Differentiation, 2001, 8, 829-840.	5.0	193
32	Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods, 2013, 61, 117-129.	1.9	193
33	Caspase Inhibitors Promote Alternative Cell Death Pathways. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe44-pe44.	4.1	180
34	Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death and Disease, 2014, 5, e1004-e1004.	2.7	164
35	Passenger Mutations Confound Interpretation of All Genetically Modified Congenic Mice. Immunity, 2015, 43, 200-209.	6.6	156
36	Disruption of HSP90 Function Reverts Tumor Necrosis Factor-induced Necrosis to Apoptosis. Journal of Biological Chemistry, 2003, 278, 5622-5629.	1.6	146

TOM VANDEN BERGHE

#	Article	IF	CITATIONS
37	Simultaneous Targeting of IL-1 and IL-18 Is Required for Protection against Inflammatory and Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 282-291.	2.5	145
38	Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Molecular and Cellular Oncology, 2015, 2, e975093.	0.3	142
39	Necroptosis, in vivo detection in experimental disease models. Seminars in Cell and Developmental Biology, 2014, 35, 2-13.	2.3	135
40	Programmed Necrosis. International Review of Cell and Molecular Biology, 2011, 289, 1-35.	1.6	132
41	Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death and Differentiation, 2002, 9, 981-994.	5.0	127
42	Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death and Disease, 2020, 11, 922.	2.7	126
43	The death-fold superfamily of homotypic interaction motifs. Trends in Biochemical Sciences, 2011, 36, 541-552.	3.7	124
44	Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nature Medicine, 2020, 26, 919-931.	15.2	118
45	Chapter 16 Methods for Distinguishing Apoptotic from Necrotic Cells and Measuring Their Clearance. Methods in Enzymology, 2008, 442, 307-341.	0.4	111
46	How do we fit ferroptosis in the family of regulated cell death?. Cell Death and Differentiation, 2017, 24, 1991-1998.	5.0	107
47	Differential Signaling to Apoptotic and Necrotic Cell Death by Fas-associated Death Domain Protein FADD. Journal of Biological Chemistry, 2004, 279, 7925-7933.	1.6	105
48	Ubiquitin-Mediated Regulation of RIPK1 Kinase Activity Independent of IKK and MK2. Molecular Cell, 2018, 69, 566-580.e5.	4.5	102
49	Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nature Communications, 2022, 13, .	5.8	100
50	An outline of necrosome triggers. Cellular and Molecular Life Sciences, 2016, 73, 2137-2152.	2.4	99
51	Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVIDâ€19): autopsy reveals a ferroptosis signature. ESC Heart Failure, 2020, 7, 3772-3781.	1.4	93
52	Necrosis is associated with IL-6 production but apoptosis is not. Cellular Signalling, 2006, 18, 328-335.	1.7	90
53	Novel Ferroptosis Inhibitors with Improved Potency and ADME Properties. Journal of Medicinal Chemistry, 2016, 59, 2041-2053.	2.9	88
54	NLRP3/Caspase-1–Independent IL-1β Production Mediates Diesel Exhaust Particle-Induced Pulmonary Inflammation. Journal of Immunology, 2011, 187, 3331-3337.	0.4	86

#	Article	IF	CITATIONS
55	Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 667-681.	2.5	85
56	Discovery of Novel, Drug-Like Ferroptosis Inhibitors with in Vivo Efficacy. Journal of Medicinal Chemistry, 2018, 61, 10126-10140.	2.9	80
57	Treatment of PCâ€3 and DU145 prostate cancer cells by prenylflavonoids from hop (<i>Humulus) Tj ETQq1 1 197-203.</i>	0.784314 rg 2.8	BT /Overlock 76
58	Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochemical Pharmacology, 2020, 173, 113602.	2.0	73
59	lonizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death and Disease, 2020, 11, 1003.	2.7	71
60	Proteome-wide Substrate Analysis Indicates Substrate Exclusion as a Mechanism to Generate Caspase-7 Versus Caspase-3 Specificity. Molecular and Cellular Proteomics, 2009, 8, 2700-2714.	2.5	64
61	A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochemical Society Transactions, 2007, 35, 1508-1511.	1.6	61
62	Targeting ferroptosis protects against experimental (multi)organ dysfunction and death. Nature Communications, 2022, 13, 1046.	5.8	60
63	Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. Nature Communications, 2018, 9, 4846.	5.8	53
64	RIPK1 prevents aberrant ZBP1-initiated necroptosis. Oncotarget, 2017, 8, 1-2.	0.8	53
65	Caspases leave the beaten track: caspase-mediated activation of NF-κB. Journal of Cell Biology, 2006, 173, 165-171.	2.3	51
66	A real-time fluorometric method for the simultaneous detection of cell death type and rate. Nature Protocols, 2016, 11, 1444-1454.	5.5	50
67	Ferroptosis: Biological Rust of Lipid Membranes. Antioxidants and Redox Signaling, 2021, 35, 487-509.	2.5	42
68	Caspase substrates: easily caught in deep waters?. Trends in Biotechnology, 2009, 27, 680-688.	4.9	40
69	Intermediate Domain of Receptor-interacting Protein Kinase 1 (RIPK1) Determines Switch between Necroptosis and RIPK1 Kinase-dependent Apoptosis. Journal of Biological Chemistry, 2012, 287, 14863-14872.	1.6	40
70	Fine-tuning nucleophosmin in macrophage differentiation and activation. Blood, 2011, 118, 4694-4704.	0.6	39
71	Interaction Patches of Procaspase-1 Caspase Recruitment Domains (CARDs) Are Differently Involved in Procaspase-1 Activation and Receptor-interacting Protein 2 (RIP2)-dependent Nuclear Factor ΰB Signaling. Journal of Biological Chemistry, 2011, 286, 35874-35882.	1.6	38
72	NADPH Oxidases: New Players in TNF-Induced Necrotic Cell Death. Molecular Cell, 2007, 26, 769-771.	4.5	37

TOM VANDEN BERGHE

#	Article	IF	CITATIONS
73	Inflammatory mediators in Escherichia coli-induced mastitis in mice. Comparative Immunology, Microbiology and Infectious Diseases, 2008, 31, 551-565.	0.7	35
74	Structure/Function Analysis of p55 Tumor Necrosis Factor Receptor and Fas-associated Death Domain. Journal of Biological Chemistry, 2000, 275, 37596-37603.	1.6	34
75	Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death and Disease, 2014, 5, e1366-e1366.	2.7	34
76	Non-Classical ProIL-1beta Activation during Mammary Gland Infection Is Pathogen-Dependent but Caspase-1 Independent. PLoS ONE, 2014, 9, e105680.	1.1	33
77	Caspaseâ€7 participates in differentiation of cells forming dental hard tissues. Development Growth and Differentiation, 2013, 55, 615-621.	0.6	30
78	Preconditioning with Lipopolysaccharide or Lipoteichoic Acid Protects against Staphylococcus aureus Mammary Infection in Mice. Frontiers in Immunology, 2017, 8, 833.	2.2	29
79	Necrotic cell death and â€~necrostatins': now we can control cellular explosion. Trends in Biochemical Sciences, 2008, 33, 352-355.	3.7	27
80	Survival of Single Positive Thymocytes Depends upon Developmental Control of RIPK1 Kinase Signaling by the IKK Complex Independent of NF-κB. Immunity, 2019, 50, 348-361.e4.	6.6	27
81	The mitochondrial serine protease HtrA2/Omi cleaves RIP1 during apoptosis of Ba/F3 cells induced by growth factor withdrawal. Cell Research, 2010, 20, 421-433.	5.7	26
82	More Than One Way to Die: Methods to Determine TNF-Induced Apoptosis and Necrosis. , 2004, 98, 101-126.		24
83	Inhibition of spontaneous neutrophil apoptosis by parabutoporin acts independently of NADPH oxidase inhibition but by lipid raft-dependent stimulation of Akt. Journal of Leukocyte Biology, 2009, 85, 497-507.	1.5	23
84	Mitochondria and NADPH oxidases are the major sources of TNF-α/cycloheximide-induced oxidative stress in murine intestinal epithelial MODE-K cells. Cellular Signalling, 2015, 27, 1141-1158.	1.7	22
85	Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease. Cell Death Discovery, 2017, 3, 17012.	2.0	21
86	Novel Iron Oxide Nanoparticles Induce Ferroptosis in a Panel of Cancer Cell Lines. Molecules, 2022, 27, 3970.	1.7	19
87	Caspase-7 in molar tooth development. Archives of Oral Biology, 2012, 57, 1474-1481.	0.8	17
88	An Inactivating Caspase-11 Passenger Mutation Muddles Sepsis Research. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 120-121.	2.5	17
89	Nanoscopic X-ray fluorescence imaging and quantification of intracellular key-elements in cryofrozen Friedreich's ataxia fibroblasts. PLoS ONE, 2018, 13, e0190495.	1.1	17
90	Caspase-3 probes for PET imaging of apoptotic tumor response to anticancer therapy. Organic and Biomolecular Chemistry, 2019, 17, 4801-4824.	1.5	17

#	Article	IF	CITATIONS
91	Viral dosing of influenza A infection reveals involvement of RIPK3 and FADD, but not MLKL. Cell Death and Disease, 2021, 12, 471.	2.7	15
92	Paving the way for precision medicine v2.0 in intensive care by profiling necroinflammation in biofluids. Cell Death and Differentiation, 2019, 26, 83-98.	5.0	10
93	Executioner caspases 3 and 7 are dispensable for intestinal epithelium turnover and homeostasis at steady state. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
94	Water-soluble withaferin A polymer prodrugs via a drug-functionalized RAFT CTA approach. European Polymer Journal, 2019, 110, 313-318.	2.6	7
95	Expression of Calciumâ€5ensing Receptor in Quail Granulosa Explants: A Key to Survival During Folliculogenesis. Anatomical Record, 2010, 293, 890-899.	0.8	6
96	Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue. Journal of Molecular Histology, 2015, 46, 443-455.	1.0	6
97	Take my breath away: necrosis in kidney transplants kills the lungs!. Kidney International, 2015, 87, 680-682.	2.6	6
98	Feasibility study for clinical application of caspase-3 inhibitors in Pemphigus vulgaris. Experimental Dermatology, 2017, 26, 1274-1277.	1.4	6
99	Nanoscopic X-ray imaging and quantification of the iron cellular architecture within single fibroblasts of Friedreich's ataxia patients. Journal of Synchrotron Radiation, 2020, 27, 185-198.	1.0	5
100	Emerging immune and cell death mechanisms in stroke: Saponins as therapeutic candidates. Brain, Behavior, & Immunity - Health, 2020, 9, 100152.	1.3	5
101	Luminescent HumanÂiPSC-Derived Neurospheroids Enable Modeling of Neurotoxicity After Oxygen–glucose Deprivation. Neurotherapeutics, 2022, 19, 550-569.	2.1	5
102	Methods to Study and Distinguish Necroptosis. , 2014, , 335-361.		3
103	Necrosis: Molecular Mechanisms and Physiological Roles. , 2009, , 599-633.		2
104	MLKL Reveals Its Friendly Face: A Role in Nerve Regeneration. Molecular Cell, 2018, 72, 397-399.	4.5	1
105	Necrotic cell death, a controlled way of cellular explosion. , 2008, , 189-190.		0
106	Role Of Caspase-7 In Cigarette Smoke-Induced Inflammation In Mice. , 2011, , .		0
107	Effect of LPS, dsRNA or interferons on the phagocytosis of dying cells or mycobacteria by macrophages. BMC Proceedings, 2011, 5, .	1.8	0
108	Caspase-3 and Caspase-7. , 2013, , 2256-2265.		0

#	Article	IF	CITATIONS
109	Necroptosis: A Novel Way of Regulated Necrosis with Large Pathophysiological Implications. , 2014, , 153-161.		0
110	Heavy metal suicide. American Journal of Physiology - Renal Physiology, 2017, 313, F959-F960.	1.3	0
111	Ferroptosis in Cancer Disease. , 2019, , 285-301.		0