Vibe Hallundbæk Oestergaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177235/publications.pdf

Version: 2024-02-01

25 papers 960 citations

16 h-index 24 g-index

26 all docs

26 does citations

26 times ranked

1373 citing authors

#	Article	IF	CITATIONS
1	Functions of TopBP1 in preserving genome integrity during mitosis. Seminars in Cell and Developmental Biology, 2021, 113, 57-64.	5.0	26
2	Large Intronic Deletion of the Fragile Site Gene PRKN Dramatically Lowers Its Fragility Without Impacting Gene Expression. Frontiers in Genetics, 2021, 12, 695172.	2.3	2
3	A complex of BRCA2 and PP2A-B56 is required for DNA repair by homologous recombination. Nature Communications, 2021, 12, 5748.	12.8	24
4	The ZGRF1 Helicase Promotes Recombinational Repair of Replication-Blocking DNA Damage in Human Cells. Cell Reports, 2020, 32, 107849.	6.4	9
5	A distinct role for recombination repair factors in an early cellular response to transcription–replication conflicts. Nucleic Acids Research, 2020, 48, 5467-5484.	14.5	23
6	FANCD2 binding identifies conserved fragile sites at large transcribed genes in avian cells. Nucleic Acids Research, 2018, 46, 1280-1294.	14.5	43
7	Common Chromosomal Fragile Sitesâ€"Conserved Failure Stories. Genes, 2018, 9, 580.	2.4	17
8	Transcription-replication conflicts at chromosomal fragile sitesâ€"consequences in M phase and beyond. Chromosoma, 2017, 126, 213-222.	2.2	17
9	Immunostaining of Formaldehyde-fixed Metaphase Chromosome from Untreated and Aphidicolin-treated DT40 Cells. Bio-protocol, 2017, 7, e2259.	0.4	0
10	TopBP1 makes the final call for repair on the verge of cell division. Molecular and Cellular Oncology, 2016, 3, e1093066.	0.7	2
11	The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line. DNA Repair, 2016, 40, 67-76.	2.8	20
12	TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. Journal of Cell Biology, 2016, 212, 281-288.	5.2	70
13	TopBP1-mediated DNA processing during mitosis. Cell Cycle, 2016, 15, 176-183.	2.6	21
14	TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells. Journal of Cell Biology, 2015, 210, 565-582.	5.2	82
15	TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability. Journal of Cell Biology, 2014, 204, 45-59.	5.2	93
16	The Genetic and Biochemical Basis of FANCD2 Monoubiquitination. Molecular Cell, 2014, 54, 858-869.	9.7	109
17	RNF8 and RNF168 but not HERC2 are required for DNA damage-induced ubiquitylation in chicken DT40 cells. DNA Repair, 2012, 11, 892-905.	2.8	22
18	Dpb11/TopBP1 plays distinct roles in DNA replication, checkpoint response and homologous recombination. DNA Repair, 2011, 10, 210-224.	2.8	34

VIBE HALLUNDBæK

#	Article	IF	CITATION
19	The QTK Loop Is Essential for the Communication between the N-Terminal ATPase Domain and the Central Cleavageâ°'Ligation Region in Human Topoisomerase Ilα. Biochemistry, 2009, 48, 6508-6515.	2.5	14
20	Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair. Molecular Cell, 2007, 28, 798-809.	9.7	180
21	RAD18â€independent ubiquitination of proliferatingâ€cell nuclear antigen in the avian cell line DT40. EMBO Reports, 2006, 7, 927-932.	4.5	77
22	Dissecting the Cell-killing Mechanism of the Topoisomerase II-targeting Drug ICRF-193. Journal of Biological Chemistry, 2004, 279, 28100-28105.	3.4	19
23	Hindering the Strand Passage Reaction of Human Topoisomerase Ilα without Disturbing DNA Cleavage, ATP Hydrolysis, or the Operation of the N-terminal Clamp. Journal of Biological Chemistry, 2004, 279, 28093-28099.	3.4	7
24	The Transducer Domain Is Important for Clamp Operation in Human DNA Topoisomerase IlÎ \pm . Journal of Biological Chemistry, 2004, 279, 1684-1691.	3.4	22
25	A Human Topoisomerase IIα Heterodimer with Only One ATP Binding Site Can Go through Successive Catalytic Cycles. Journal of Biological Chemistry, 2003, 278, 5768-5774.	3.4	26