
John D Coates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3176623/publications.pdf Version: 2024-02-01

ΙΟΗΝ D COATES

#	Article	IF	CITATIONS
1	Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world's oceans. ISME Journal, 2022, 16, 38-49.	9.8	21
2	The diversity and evolution of microbial dissimilatory phosphite oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
3	Sulfate adenylyl transferase kinetics and mechanisms of metabolic inhibitors of microbial sulfate respiration. ISME Communications, 2021, 1, .	4.2	0
4	Isolation of a Dissimilatory Iodate-Reducing Aromatoleum sp. From a Freshwater Creek in the San Francisco Bay Area. Frontiers in Microbiology, 2021, 12, 804181.	3.5	2
5	Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. ISME Journal, 2020, 14, 450-462.	9.8	7
6	Tungstate Control of Microbial Sulfidogenesis and Souring of the Engineered Environment. Environmental Science & Technology, 2020, 54, 16119-16127.	10.0	6
7	An uncharacterized clade in the <scp>DMSO</scp> reductase family of molybdenum oxidoreductases is a new type of chlorate reductase. Environmental Microbiology Reports, 2020, 12, 534-539.	2.4	4
8	Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle. ISME Journal, 2020, 14, 1194-1206.	9.8	15
9	Biofilm Feedbacks Alter Hydrological Characteristics of Fractured Rock Impacting Sulfidogenesis and Treatment. Energy & Fuels, 2019, 33, 10476-10486.	5.1	4
10	Resistance and Resilience of Sulfidogenic Communities in the Face of the Specific Inhibitor Perchlorate. Frontiers in Microbiology, 2019, 10, 654.	3.5	4
11	Adaptation of <i>Desulfovibrio alaskensis</i> G20 to perchlorate, a specific inhibitor of sulfate reduction. Environmental Microbiology, 2019, 21, 1395-1406.	3.8	14
12	Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. Microbiology (United Kingdom), 2019, 165, 254-269.	1.8	23
13	Perchlorate and Its Application in the Oil and Gas Industry. , 2019, , 109-128.		3
14	Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME Journal, 2018, 12, 1568-1581.	9.8	82
15	Comprehensive Analysis of Changes in Crude Oil Chemical Composition during Biosouring and Treatments. Environmental Science & Technology, 2018, 52, 1290-1300.	10.0	15
16	Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO ₂ fixation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E92-E101.	7.1	115
17	Microbial Sulfate Reduction and Perchlorate Inhibition in a Novel Mesoscale Tank Experiment. Energy & Fuels, 2018, 32, 12049-12065.	5.1	5
18	Mitigating Sulfidogenesis With Simultaneous Perchlorate and Nitrate Treatments. Frontiers in Microbiology, 2018, 9, 2305.	3.5	13

#	Article	IF	CITATIONS
19	Attenuating Sulfidogenesis in a Soured Continuous Flow Column System With Perchlorate Treatment. Frontiers in Microbiology, 2018, 9, 1575.	3.5	32
20	Dissimilatory Sulfate Reduction Under High Pressure by Desulfovibrio alaskensis G20. Frontiers in Microbiology, 2018, 9, 1465.	3.5	15
21	Functional Redundancy in Perchlorate and Nitrate Electron Transport Chains and Rewiring Respiratory Pathways to Alter Terminal Electron Acceptor Preference. Frontiers in Microbiology, 2018, 9, 376.	3.5	20
22	Mechanism of H ₂ S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism <i>Azospira suillum</i> PS. MBio, 2017, 8, .	4.1	66
23	High-Throughput Screening To Identify Potent and Specific Inhibitors of Microbial Sulfate Reduction. Environmental Science & Technology, 2017, 51, 7278-7285.	10.0	27
24	Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms, 2017, 5, 76.	3.6	36
25	Microbial metal resistance and metabolism across dynamic landscapes: high-throughput environmental microbiology. F1000Research, 2017, 6, 1026.	1.6	25
26	Genetic dissection of chlorate respiration in <scp><i>P</i></scp> <i>seudomonas stutzeri</i> â€ <scp>PDA</scp> reveals syntrophic (per)chlorate reduction. Environmental Microbiology, 2016, 18, 3342-3354.	3.8	31
27	Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Applied Microbiology and Biotechnology, 2016, 100, 9719-9732.	3.6	46
28	(Per)chlorate in Biology on Earth and Beyond. Annual Review of Microbiology, 2016, 70, 435-457.	7.3	78
29	Reactive Transport Model of Sulfur Cycling as Impacted by Perchlorate and Nitrate Treatments. Environmental Science & Technology, 2016, 50, 7010-7018.	10.0	45
30	Enrichment and Isolation of Chloroxyanion-Respiring Hydrocarbon Oxidizers. Springer Protocols, 2016, , 165-176.	0.3	1
31	Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues. Journal of Biological Chemistry, 2016, 291, 9190-9202.	3.4	71
32	The Perchlorate Reduction Genomic Island: Mechanisms and Pathways of Evolution by Horizontal Gene Transfer. BMC Genomics, 2015, 16, 862.	2.8	39
33	(Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor. MBio, 2015, 6, .	4.1	22
34	Monofluorophosphate Is a Selective Inhibitor of Respiratory Sulfate-Reducing Microorganisms. Environmental Science & Technology, 2015, 49, 3727-3736.	10.0	69
35	Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1. MBio, 2015, 6, e00282-15.	4.1	13
36	Phenotypic and Genotypic Description of Sedimenticola selenatireducens Strain CUZ, a Marine (Per)Chlorate-Respiring Gammaproteobacterium, and Its Close Relative the Chlorate-Respiring Sedimenticola Strain NSS. Applied and Environmental Microbiology, 2015, 81, 2717-2726.	3.1	61

#	Article	IF	CITATIONS
37	Novel Mechanism for Scavenging of Hypochlorite Involving a Periplasmic Methionine-Rich Peptide and Methionine Sulfoxide Reductase. MBio, 2015, 6, e00233-15.	4.1	50
38	Widespread occurrence of (per)chlorate in the Solar System. Earth and Planetary Science Letters, 2015, 430, 470-476.	4.4	42
39	Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME Journal, 2015, 9, 1295-1305.	9.8	87
40	lsotopic insights into microbial sulfur cycling in oil reservoirs. Frontiers in Microbiology, 2014, 5, 480.	3.5	29
41	Methane oxidation linked to chlorite dismutation. Frontiers in Microbiology, 2014, 5, 275.	3.5	15
42	Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Frontiers in Microbiology, 2014, 5, 315.	3.5	103
43	Transposon and Deletion Mutagenesis of Genes Involved in Perchlorate Reduction in <i>Azospira suillum</i> PS. MBio, 2014, 5, e00769-13.	4.1	32
44	Control of sulfidogenesis through bioâ€oxidation of <scp><scp>H₂S</scp></scp> coupled to (per)chlorate reduction. Environmental Microbiology Reports, 2014, 6, 558-564.	2.4	69
45	Chlorate reduction in <scp><i>S</i></scp> <i>hewanella algae</i> â€ <scp>ACDC</scp> is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress. Molecular Microbiology, 2014, 94, 107-125.	2.5	30
46	Surfaceomics and surfaceâ€enhanced <scp>R</scp> aman spectroscopy of environmental microbes: Matching cofactors with redoxâ€active surface proteins. Proteomics, 2013, 13, 2761-2765.	2.2	3
47	Physiological and Genetic Description of Dissimilatory Perchlorate Reduction by the Novel Marine Bacterium <i>Arcobacter</i> sp. Strain CAB. MBio, 2013, 4, e00217-13.	4.1	64
48	Fe(II) Oxidation Is an Innate Capability of Nitrate-Reducing Bacteria That Involves Abiotic and Biotic Reactions. Journal of Bacteriology, 2013, 195, 3260-3268.	2.2	144
49	Structure and Evolution of Chlorate Reduction Composite Transposons. MBio, 2013, 4, .	4.1	64
50	Perchlorate on Mars: a chemical hazard and a resource for humans. International Journal of Astrobiology, 2013, 12, 321-325.	1.6	97
51	Complete Genome Sequence of the Anaerobic Perchlorate-Reducing Bacterium Azospira suillum Strain PS. Journal of Bacteriology, 2012, 194, 2767-2768.	2.2	46
52	Surface multiheme <i>c</i> -type cytochromes from <i>Thermincola potens</i> and implications for respiratory metal reduction by Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1702-1707.	7.1	178
53	Bioelectrical redox cycling of anthraquinone-2,6-disulfonate coupled to perchlorate reduction. Energy and Environmental Science, 2012, 5, 7970.	30.8	19
54	Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Geochimica Et Cosmochimica Acta, 2012, 98, 19-30.	3.9	31

#	Article	IF	CITATIONS
55	Toward a Mechanistic Understanding of Anaerobic Nitrate-Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification. Frontiers in Microbiology, 2012, 3, 57.	3.5	86
56	A Bioassay for the Detection of Perchlorate in the ppb Range. Environmental Science & Technology, 2011, 45, 2958-2964.	10.0	28
57	Identification of a Perchlorate Reduction Genomic Island with Novel Regulatory and Metabolic Genes. Applied and Environmental Microbiology, 2011, 77, 7401-7404.	3.1	57
58	Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov Applied Microbiology and Biotechnology, 2010, 86, 335-343.	3.6	61
59	<i>Magnetospirillum bellicus</i> sp. nov., a Novel Dissimilatory Perchlorate-Reducing Alphaproteobacterium Isolated from a Bioelectrical Reactor. Applied and Environmental Microbiology, 2010, 76, 4730-4737.	3.1	56
60	Real-time biocatalyst loading and electron transfer via microfabricated transparent electrode. , 2010, ,		0
61	Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. Applied Microbiology and Biotechnology, 2009, 83, 555-565.	3.6	76
62	Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors. Applied Microbiology and Biotechnology, 2009, 84, 955-963.	3.6	31
63	A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME Journal, 2008, 2, 1146-1156.	9.8	299
64	Review: Direct and Indirect Electrical Stimulation of Microbial Metabolism. Environmental Science & Technology, 2008, 42, 3921-3931.	10.0	308
65	Electrochemical Stimulation of Microbial Perchlorate Reduction. Environmental Science & Technology, 2007, 41, 1740-1746.	10.0	216
66	The Microbiology of Perchlorate Reduction and its Bioremediative Application. , 2006, , 279-295.		18
67	Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 2006, 4, 752-764.	28.6	1,371
68	The Biochemistry and Genetics of Microbial Perchlorate Reduction. , 2006, , 297-310.		7
69	Biological Control of Hog Waste Odor through Stimulated Microbial Fe(III) Reduction. Applied and Environmental Microbiology, 2005, 71, 4728-4735.	3.1	50
70	Identification, Characterization, and Classification of Genes Encoding Perchlorate Reductase. Journal of Bacteriology, 2005, 187, 5090-5096.	2.2	136
71	Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and Xylene Compounds by <i>Dechloromonas</i> Strain RCB. Applied and Environmental Microbiology, 2005, 71, 8649-8655.	3.1	191
72	Metabolic Primers for Detection of (Per)chlorate-Reducing Bacteria in the Environment and Phylogenetic Analysis of cld Gene Sequences. Applied and Environmental Microbiology, 2004, 70, 5651-5658.	3.1	84

#	Article	IF	CITATIONS
73	Microbial perchlorate reduction: rocket-fuelled metabolism. Nature Reviews Microbiology, 2004, 2, 569-580.	28.6	481
74	Sequencing and Transcriptional Analysis of the Chlorite Dismutase Gene of Dechloromonas agitata and Its Use as a Metabolic Probe. Applied and Environmental Microbiology, 2002, 68, 4820-4826.	3.1	82
75	Universal Immunoprobe for (Per)Chlorate-Reducing Bacteria. Applied and Environmental Microbiology, 2002, 68, 3108-3113.	3.1	62
76	Environmental Factors That Control Microbial Perchlorate Reduction. Applied and Environmental Microbiology, 2002, 68, 4425-4430.	3.1	176
77	Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration. Applied and Environmental Microbiology, 2002, 68, 2445-2452.	3.1	191
78	Anaerobic benzene biodegradation—a new era. Research in Microbiology, 2002, 153, 621-628.	2.1	128
79	Biogenic Magnetite Formation through Anaerobic Biooxidation of Fe(II). Applied and Environmental Microbiology, 2001, 67, 2844-2848.	3.1	227
80	Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature, 2001, 411, 1039-1043.	27.8	474
81	Isolation and Characterization of Two Novel (Per)Chlorate-Reducing Bacteria from Swine Waste Lagoons. , 2000, , 271-283.		38
82	Ubiquity and Diversity of Dissimilatory (Per)chlorate-Reducing Bacteria. Applied and Environmental Microbiology, 1999, 65, 5234-5241.	3.1	434
83	Hydrocarbon Bioremediative Potential of (Per)Chlorate-Reducing Bacteria. Bioremediation Journal, 1999, 3, 323-334.	2.0	44
84	Humics as an electron donor for anaerobic respiration. Environmental Microbiology, 1999, 1, 89-98.	3.8	290
85	Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology, 1999, 1, 319-329.	3.8	237
86	Localized Sulfate-Reducing Zones in a Coastal Plain Aquifer. Ground Water, 1999, 37, 505-516.	1.3	29
87	Anoxic bioremediation of hydrocarbons. Nature, 1998, 396, 730-730.	27.8	59
88	Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov Archives of Microbiology, 1997, 168, 380-388.	2.2	264
89	Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediments under Sulfate-Reducing and Artificially Imposed Iron-Reducing Conditions. Environmental Science & Technology, 1996, 30, 2784-2789.	10.0	150
90	Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Archives of Microbiology, 1995, 164, 406-413.	2.2	157

#	Article	IF	CITATIONS
91	Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria. , 0, , 173-P1.		4
92	Anaerobic Respiratory Iron(II) Oxidation. , 0, , 157-171.		1