Willy A Flegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3176618/publications.pdf

Version: 2024-02-01

244 papers

7,912 citations

51 h-index 69214 77 g-index

255 all docs 255 docs citations

times ranked

255

3506 citing authors

#	Article	IF	CITATIONS
1	Molecular Basis of Weak D Phenotypes. Blood, 1999, 93, 385-393.	0.6	317
2	RHD gene deletion occurred in the Rhesus box. Blood, 2000, 95, 3662-3668.	0.6	312
3	RHD positive haplotypes in D negative Europeans. BMC Genetics, 2001, 2, 10.	2.7	289
4	Weak D alleles express distinct phenotypes. Blood, 2000, 95, 2699-2708.	0.6	223
5	Prevention of endotoxin-induced monokine release by human low- and high-density lipoproteins and by apolipoprotein A-I. Infection and Immunity, 1993, 61, 5140-5146.	1.0	158
6	It's time to phase in <i><scp>RHD</scp></i> genotyping for patients with a serologic weak <scp>D</scp> phenotype. Transfusion, 2015, 55, 680-689.	0.8	157
7	Molecular genetics and clinical applications for RH. Transfusion and Apheresis Science, 2011, 44, 81-91.	0.5	143
8	Norovirus gastroenteritis causes severe and lethal complications after chemotherapy and hematopoietic stem cell transplantation. Blood, 2011, 117, 5850-5856.	0.6	140
9	Treatment Strategies for Deficiency of Adenosine Deaminase 2. New England Journal of Medicine, 2019, 380, 1582-1584.	13.9	138
10	Six years' experience performing <i>RHD</i> genotyping to confirm Dâ^ red blood cell units in Germany for preventing antiâ€D immunizations. Transfusion, 2009, 49, 465-471.	0.8	119
11	How I manage donors and patients with a weak D phenotype. Current Opinion in Hematology, 2006, 13, 476-483.	1.2	111
12	RHD/CE typing by polymerase chain reaction using sequence-specific primers. Transfusion, 1997, 37, 1020-1026.	0.8	108
13	Partial D, weak D types, and novel RHD alleles among 33,864 multiethnic patients: implications for anti-D alloimmunization and prevention. Transfusion, 2005, 45, 1554-1560.	0.8	105
14	PCR screening for common weak D types shows different distributions in three Central European populations. Transfusion, 2001, 41, 45-52.	0.8	104
15	Does prolonged storage of red blood cells cause harm?. British Journal of Haematology, 2014, 165, 3-16.	1.2	99
16	Three Molecular Structures Cause Rhesus D Category VI Phenotypes With Distinct Immunohematologic Features. Blood, 1998, 91, 2157-2168.	0.6	97
17	Molecular Basis of Weak D Phenotypes. Blood, 1999, 93, 385-393.	0.6	90
18	An epidemiologic survey of human alveolar echinococcosis in southwestern Germany. Römerstein Study Group American Journal of Tropical Medicine and Hygiene, 1999, 61, 566-573.	0.6	90

#	Article	IF	CITATIONS
19	RHD gene deletion occurred in the Rhesus box. Blood, 2000, 95, 3662-8.	0.6	90
20	The DAU allele cluster of the RHDgene. Blood, 2002, 100, 306-311.	0.6	82
21	The BloodGen project: toward mass-scale comprehensive genotyping of blood donors in the European Union and beyond. Transfusion, 2007, 47, 40S-46S.	0.8	80
22	Rh phenotype prediction by DNA typing and its application to practice. Transfusion Medicine, 1998, 8, 281-302.	0.5	77
23	Three Molecular Structures Cause Rhesus D Category VI Phenotypes With Distinct Immunohematologic Features. Blood, 1998, 91, 2157-2168.	0.6	77
24	Serological weak D phenotypes: a review and guidance for interpreting the RhD blood type using the <i><scp>RHD</scp></i> genotype. British Journal of Haematology, 2017, 179, 10-19.	1.2	76
25	International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Berlin report. Vox Sanguinis, 2011, 101, 77-82.	0.7	75
26	International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology: Report of the Dubai, Copenhagen and Toronto meetings. Vox Sanguinis, 2019, 114, 95-102.	0.7	75
27	Review: the molecular basis of the Rh blood group phenotypes. Immunohematology, 2004, 20, 23-36.	0.2	7 5
28	Molecular biology of partial D and weak D: implications for blood bank practice. Clinical Laboratory, 2002, 48, 53-9.	0.2	75
29	Transfusion-associated graft-versus-host disease: risk due to homozygous HLA haplotypes. Transfusion, 1995, 35, 284-291.	0.8	74
30	Pathogenesis and mechanisms of antibodyâ€mediated hemolysis. Transfusion, 2015, 55, S47-58.	0.8	74
31	Applying molecular immunohematology discoveries to standards of practice in blood banks: now is the time. Transfusion, 2008, 48, 2461-2475.	0.8	73
32	Molecular genetics ofÂRH andÂitsÂclinical application. Transfusion Clinique Et Biologique, 2006, 13, 4-12.	0.2	71
33	Primary anti-D immunization by weak D type 2 RBCs. Transfusion, 2000, 40, 428-434.	0.8	70
34	Implementing massâ€scale red cell genotyping at a blood center. Transfusion, 2015, 55, 2610-2615.	0.8	70
35	Molecular basis of weak D phenotypes. Blood, 1999, 93, 385-93.	0.6	70
36	International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Cancun report (2012). Vox Sanguinis, 2014, 107, 90-96.	0.7	69

3

#	Article	IF	Citations
37	Antibodies to high-frequency antigens may decrease the quality of transfusion support: an observational study. Transfusion, 2003, 43, 1563-1566.	0.8	68
38	The Rhesus Site. Transfusion Medicine and Hemotherapy, 2014, 41, 357-363.	0.7	68
39	An easy RHD genotyping strategy for D? East Asian persons applied to Korean blood donors. Transfusion, 2006, 46, 2128-2137.	0.8	67
40	Integration of red cell genotyping into the blood supply chain: a population-based study. Lancet Haematology,the, 2015, 2, e282-e288.	2.2	66
41	Weak D alleles express distinct phenotypes. Blood, 2000, 95, 2699-708.	0.6	66
42	International Society of Blood Transfusion Committee on Terminology for Red Blood Cell Surface Antigens: Macao report. Vox Sanguinis, 2009, 96, 153-156.	0.7	65
43	Low frequency of antiâ€D alloimmunization following D+ platelet transfusion: the Antiâ€D Alloimmunization after Dâ€incompatible Platelet Transfusions (ADAPT) study. British Journal of Haematology, 2015, 168, 598-603.	1.2	65
44	Polymorphism of thehallele and the population frequency of sporadic nonfunctional alleles. Transfusion, 1997, 37, 284-290.	0.8	64
45	RHD allele distribution in Africans of Mali. BMC Genetics, 2003, 4, 14.	2.7	61
46	Integrating pharmacogenetic information and clinical decision support into the electronic health record. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 522-528.	2.2	61
47	Section 1B: Rh flow cytometryCoordinatorË^s report.Rhesus index and antigen density: an analysis of the reproducibility of flow cytometric determination. Transfusion Clinique Et Biologique, 2002, 9, 33-42.	0.2	59
48	Dpbx, a new homeobox gene closely related to the human proto-oncogene pbxl molecular structure and developmental expression. Mechanisms of Development, 1993, 41, 155-161.	1.7	58
49	DNB: a partial D with anti-D frequent in Central Europe. Blood, 2002, 100, 2253-2256.	0.6	58
50	A practical strategy to reduce the risk of passive hemolysis by screening plateletpheresis donors for high $\hat{\epsilon}$ titer ABO antibodies. Transfusion, 2011, 51, 92-96.	0.8	58
51	Random survey for RHD alleles among D+ European persons. Transfusion, 2005, 45, 1183-1191.	0.8	56
52	International Society of Blood Transfusion Committee on Terminology for Red Cell Surface Antigens: Cape Town report. Vox Sanguinis, 2007, 92, 250-253.	0.7	56
53	International society of blood transfusion working party on red cell immunogenetics and terminology: report of the Seoul and London meetings. ISBT Science Series, 2016, 11, 118-122.	1.1	56
54	Scianna antigens including Rd are expressed by ERMAP. Blood, 2003, 101, 752-757.	0.6	52

#	Article	IF	CITATIONS
55	Donors with a rare pheno (geno) type. Vox Sanguinis, 2008, 95, 236-253.	0.7	51
56	The genetics of the Rhesus blood group system. Blood Transfusion, 2007, 5, 50-7.	0.3	51
57	Review: the molecular basis of the Rh blood group phenotypes. Immunohematology, 2004, 20, 23-36.	0.2	51
58	The RHCE allele ceRT: D epitope 6 expression does not require D-specific amino acids. Transfusion, 2003, 43, 1248-1254.	0.8	50
59	Genetic mechanisms of Rhesus box variation. Transfusion, 2005, 45, 338-344.	0.8	49
60	The Bloodgen Project of the European Union, 2003–2009. Transfusion Medicine and Hemotherapy, 2009, 36, 162-167.	0.7	48
61	Blood group genotyping in Germany. Transfusion, 2007, 47, 47S-53S.	0.8	46
62	Frequencies of the Blood Groups ABO, Rhesus, D Category VI, Kell, and of Clinically Relevant High-Frequency Antigens in South-Western Germany. Transfusion Medicine and Hemotherapy, 1995, 22, 285-290.	0.7	45
63	RH genotyping in a sickle cell disease patient contributing to hematopoietic stem cell transplantation donor selection and management. Blood, 2010, 116, 2836-2838.	0.6	45
64	CDw 60 antibodies bind to acetylated forms of ganglioside GD3. Biochemical and Biophysical Research Communications, 1992, 187, 1343-1349.	1.0	44
65	Low density lipoproteins inhibit endotoxin activation of monocytes Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1992, 12, 341-347.	3.8	42
66	Molecular basis of the D variant phenotypes DNU and D II allows localization of critical amino acids required for expression of Rh D epitopes epD3, 4 and 9 to the sixth external domain of the Rh D protein. British Journal of Haematology, 1997, 97, 366-371.	1.2	40
67	RHCE represents the ancestral RHposition, while RHD is the duplicated gene. Blood, 2002, 99, 2272-2274.	0.6	40
68	Low cytokine contamination in buffy coat-derived platelet concentrates without filtration. Transfusion, 1995, 35, 917-920.	0.8	39
69	Homing in on D antigen immunogenicity. Transfusion, 2005, 45, 466-468.	0.8	39
70	D variants at the RhD vestibule in the weak D type 4 and Eurasian D clusters. Transfusion, 2009, 49, 1059-1069.	0.8	39
71	Red Blood Cell Transfusion. JAMA - Journal of the American Medical Association, 2015, 314, 1557.	3.8	37
72	On the Complexity of D Antigen Typing: A Handy Decision Tree in the Age of Molecular Blood Group Diagnostics. Journal of Obstetrics and Gynaecology Canada, 2007, 29, 746-752.	0.3	36

#	Article	IF	Citations
73	Paroxysmal nocturnal haemoglobinuria treatment with eculizumab is associated with a positive direct antiglobulin test. Vox Sanguinis, 2012, 102, 159-166.	0.7	36
74	The effect of cigarette smoking on the clinical and serological phenotypes of polymyositis and dermatomyositis. Seminars in Arthritis and Rheumatism, 2018, 48, 504-512.	1.6	36
75	Analyses of genome wide association data, cytokines, and gene expression in African-Americans with benign ethnic neutropenia. PLoS ONE, 2018, 13, e0194400.	1.1	36
76	Applying molecular immunohaematology to regularly transfused thalassaemic patients in Thailand. Blood Transfusion, 2014, 12, 28-35.	0.3	36
77	Recommendations for transfusion in ABOâ€incompatible hematopoietic stem cell transplantation. Transfusion, 2012, 52, 456-458.	0.8	35
78	<i>DARC</i> alleles and Duffy phenotypes in African Americans. Transfusion, 2012, 52, 1260-1267.	0.8	34
79	Red blood cell preservation by droplet freezing with polyvinylpyrrolidone or sucroseâ€dextrose and by bulk freezing with glycerol. Transfusion, 2011, 51, 2703-2708.	0.8	33
80	Outliers in RhD membrane integration are explained by variant RH haplotypes. Transfusion, 2006, 46, 1343-1351.	0.8	32
81	The RHCE allele ceCF: the molecular basis of Crawford (RH43). Transfusion, 2006, 46, 1334-1342.	0.8	31
82	Expression of blood group genes by mesenchymal stem cells. British Journal of Haematology, 2011, 153, 520-528.	1.2	31
83	It's time to phase out "serologic weak D phenotype―and resolve D types with <i>RHD</i> genotyping including weak D type 4. Transfusion, 2020, 60, 855-859.	0.8	27
84	An AQP1 null allele in an Indian woman with Co(a-b-) phenotype and high-titer anti-Co3 associated with mild HDN. Transfusion, 2001, 41, 1273-1278.	0.8	26
85	DCSâ€1, DCSâ€2, and DFV share amino acid substitutions at the extracellular RhD protein vestibule. Transfusion, 2008, 48, 25-33.	0.8	26
86	Persistence of recipient human leucocyte antigen (<scp>HLA</scp>) antibodies and production of donor <scp>HLA</scp> antibodies following reduced intensity allogeneic haematopoietic stem cell transplantation. British Journal of Haematology, 2014, 166, 425-434.	1.2	26
87	The deficiency of adenosine deaminase type 2-results of therapeutic intervention. Pediatric Rheumatology, 2015, 13, .	0.9	26
88	<scp>D</scp> category <scp>IV</scp> : a group of clinically relevant and phylogenetically diverse partial <scp>D</scp> . Transfusion, 2013, 53, 2960-2973.	0.8	25
89	A new blood group antigen is defined by antiâ€ <scp>CD</scp> 59, detected in a <scp>CD</scp> 59â€deficient patient. Transfusion, 2014, 54, 1817-1822.	0.8	25
90	DEL phenotype. Immunohematology, 2017, 33, 125-132.	0.2	25

#	Article	IF	Citations
91	RHD epitope density profiles of RHD variant red cells analyzed by flow cytometry. Transfusion Clinique Et Biologique, 1996, 3, 429-431.	0.2	24
92	Immunohaematological complications in patients with sickle cell disease after haemopoietic progenitor cell transplantation: a prospective, single-centre, observational study. Lancet Haematology,the, 2017, 4, e553-e561.	2.2	24
93	Predicting a donor's likelihood of donating within a preselected time interval. Transfusion Medicine, 2000, 10, 181-192.	0.5	23
94	A new h allele detected in Europe has a missense mutationin alpha(1,2)-fucosyltransferase motif II. Transfusion, 2001, 41, 31-38.	0.8	23
95	The RHCE allele ceSL: the second example for D antigen expression without D-specific amino acids. Transfusion, 2006, 46, 766-772.	0.8	23
96	Blood group A: an overseen risk factor for early-onset ovarian hyperstimulation syndrome?. Reproductive BioMedicine Online, 2008, 17, 185-189.	1.1	23
97	Frequencies of <i>SLC44A2</i> alleles encoding human neutrophil antigenâ€3 variants in the African American population. Transfusion, 2012, 52, 1106-1111.	0.8	23
98	Peripheral blood stem cell transplant–related <i>Plasmodium falciparum</i> infection in a patient with sickle cell disease. Transfusion, 2012, 52, 2677-2682.	0.8	23
99	HLA associations, somatic loss of HLA expression, and clinical outcomes in immune aplastic anemia. Blood, 2021, 138, 2799-2809.	0.6	23
100	Histo-Blood Group Antigens as Allo- and Autoantigens. Annals of the New York Academy of Sciences, 2005, 1050, 40-51.	1.8	22
101	SCER and SCAN: two novel high-prevalence antigens in the Scianna blood group system. Transfusion, 2005, 45, 1940-1944.	0.8	22
102	Association of blood group A with early-onset ovarian hyperstimulation syndrome. Transfusion Clinique Et Biologique, 2008, 15, 395-401.	0.2	22
103	Genotyping for red blood cell polymorphisms. Vox Sanguinis, 2009, 96, 167-179.	0.7	22
104	RhCE protein variants in Southwestern Germany detected by serologic routine testing. Transfusion, 2009, 49, 1793-1802.	0.8	22
105	Transfusion strategy for weak D Type 4.0 based on <i>RHD</i> alleles and <i>RH</i> haplotypes in Tunisia. Transfusion, 2018, 58, 306-312.	0.8	22
106	Three molecular structures cause rhesus D category VI phenotypes with distinct immunohematologic features. Blood, 1998, 91, 2157-68.	0.6	22
107	Weak D type 1.1 exemplifies another complexity in weak D genotyping. Transfusion, 2005, 45, 1568-1573.	0.8	21
108	<i><scp>RHD</scp></i> variants in <scp>P</scp> olish blood donors routinely typed as D–. Transfusion, 2013, 53, 2945-2953.	0.8	21

#	Article	IF	Citations
109	In-frame triplet deletions in RHD alter the D antigen phenotype. Transfusion, 2006, 46, 2156-2161.	0.8	20
110	Zinc status in patients with alveolar echinococcosis is related to disease progression. Parasite Immunology, 1999, 21, 237-241.	0.7	19
111	Phasing-In RHD Genotyping. Archives of Pathology and Laboratory Medicine, 2014, 138, 585-588.	1.2	19
112	Pharmacogenomics Implementation at the National Institutes of Health Clinical Center. Journal of Clinical Pharmacology, 2017, 57, S67-S77.	1.0	19
113	A DV-like phenotype is obliteratedby A226P in the partial D DBS. Transfusion, 2001, 41, 1052-1058.	0.8	18
114	The D category VI type 4 allele is prevalent in the Spanish population. Transfusion, 2006, 46, 616-623.	0.8	18
115	Easy identification of antibodies to highâ€prevalence Scianna antigens and detection of admixed alloantibodies using soluble recombinant Scianna protein. Transfusion, 2009, 49, 2090-2096.	0.8	18
116	Tissue distribution of blood group membrane proteins beyond red cells: Evidence from cDNA libraries. Transfusion and Apheresis Science, 2006, 35, 71-82.	0.5	17
117	The <i>DAU</i> cluster: a comparative analysis of 18 <i>RHD</i> alleles, some forming partial D antigens. Transfusion, 2016, 56, 2520-2531.	0.8	17
118	ABO, Rhesus, and Kell Antigens, Alleles, and Haplotypes in West Bengal, India. Transfusion Medicine and Hemotherapy, 2018, 45, 62-66.	0.7	17
119	A pilot trial of complement inhibition using eculizumab to overcome platelet transfusion refractoriness in human leukocyte antigen alloâ€immunized patients. British Journal of Haematology, 2020, 189, 551-558.	1.2	17
120	Matching for the D antigen in haematopoietic progenitor cell transplantation: definition and clinical outcomes. Blood Transfusion, 2014, 12, 301-6.	0.3	17
121	Rare gems: null phenotypes of blood groups. Blood Transfusion, 2010, 8, 2-4.	0.3	17
122	Red cell genotyping precision medicine: a conference summary. Therapeutic Advances in Hematology, 2017, 8, 277-291.	1.1	16
123	IVS5â€38del4 deletion in the <i>RHD</i> gene does not cause a DEL phenotype: relevance for <i>RHD</i> alleles including <i>DFRâ€3</i> Transfusion, 2007, 47, 1552-1555.	0.8	15
124	DEL phenotype. Immunohematology, 2017, 33, 125-132.	0.2	15
125	Organization and management of an accredited specialist in blood bank (SBB) technology program. Transfusion, 2010, 50, 1612-1617.	0.8	14
126	A proposal for a rational transfusion strategy in patients of European and North African descent with weak D type 4.0 and 4.1 phenotypes. Blood Transfusion, 2019, 17, 89-90.	0.3	14

#	Article	IF	CITATIONS
127	Fresh blood for transfusion: how old is too old for red blood cell units?. Blood Transfusion, 2012, 10, 247-51.	0.3	14
128	Histoblood Groups Other Than HLA in Organ Transplantation. Transplantation Proceedings, 2007, 39, 64-68.	0.3	13
129	Successful hematopoietic stem-cell transplantation in a patient with chronic granulomatous disease and McLeod phenotype sensitized to Kx and K antigens. Bone Marrow Transplantation, 2010, 45, 209-211.	1.3	13
130	Codon usage in vertebrates is associated with a low risk of acquiring nonsense mutations. Journal of Translational Medicine, $2011, 9, 87$.	1.8	13
131	Long-Term Immunosuppression After Solitary Islet Transplantation Is Associated With Preserved C-Peptide Secretion for More Than a Decade. American Journal of Transplantation, 2015, 15, 2995-3001.	2.6	13
132	Two large deletions extending beyond either end of the RHD gene and their red cell phenotypes. Journal of Human Genetics, 2018, 63, 27-35.	1.1	13
133	<scp>COVID</scp> â€19 antibody screening with <scp>SARSâ€CoV</scp> â€2 red cell kodecytes using routine serologic diagnostic platforms. Transfusion, 2021, 61, 1171-1180.	0.8	13
134	ABO genotyping: the quest for clinical applications. Blood Transfusion, 2013, 11, 6-9.	0.3	13
135	Long-range haplotype analysis of the malaria parasite receptor gene ACKR1 in an East-African population. Human Genome Variation, 2018, 5, 26.	0.4	12
136	RHD Genotyping of Blood Donors May Avoid Anti-D Immunization Blood, 2004, 104, 2706-2706.	0.6	12
137	DEL in China: the D antigen among serologic RhD-negative individuals. Journal of Translational Medicine, 2021, 19, 439.	1.8	12
138	Scianna: the lucky 13th blood group system. Immunohematology, 2011, 27, 25-28.	0.2	12
139	RHD antigen density and agglutination in RHD variant red cells. Transfusion Clinique Et Biologique, 1996, 3, 385-386.	0.2	11
140	Spray: singleâ€donor plasma product for room temperature storage. Transfusion, 2012, 52, 828-833.	0.8	11
141	Preventing transfusionâ€associated graftâ€versusâ€host disease with blood component irradiation: indispensable guidance for a deadly disorder. British Journal of Haematology, 2020, 191, 653-657.	1.2	11
142	Fullâ€length nucleotide sequence of <i>ERMAP</i> alleles encoding Scianna (SC) antigens. Transfusion, 2016, 56, 3047-3054.	0.8	10
143	Molecular immunohaematology round table discussions at the AABB Annual Meeting, Boston 2012. Blood Transfusion, 2014, 12, 280-6.	0.3	10
144	Molecular genetics of RH. Vox Sanguinis, 2000, 78 Suppl 2, 109-15.	0.7	10

#	Article	IF	CITATIONS
145	Comparison of Solid-Phase Antibody Screening Tests with Pooled Red Cells in Blood Donors. Vox Sanguinis, 1996, 71, 37-42.	0.7	9
146	Allo―and autoantiâ€D in weak D types and in partial D. Transfusion, 2012, 52, 2067-2069.	0.8	9
147	External quality assessment in molecular immunohematology: the <scp>INSTAND</scp> proficiency test program. Transfusion, 2013, 53, 2850-2858.	0.8	9
148	Molecular typing for blood group antigens within 40Âmin by direct polymerase chain reaction from plasma or serum. British Journal of Haematology, 2017, 176, 814-821.	1.2	9
149	<scp>Antiâ€D</scp> immunization rates may exceed 50% in many clinically relevant settings, despite varying widely among patient cohorts. Transfusion, 2020, 60, 1109-1110.	0.8	9
150	Scianna: the lucky 13th blood group system. Immunohematology, 2011, 27, 41-57.	0.2	9
151	The above letter was also sent to Dr Flegel: Dr Flegel offered the following reply. Transfusion, 2006, 46, 1063-1064.	0.8	8
152	The impact of pre-existing HLA and red blood cell antibodies on transfusion support and engraftment in sickle cell disease after nonmyeloablative hematopoietic stem cell transplantation from HLA-matched sibling donors: A prospective, single-center, observational study. EClinicalMedicine, 2020, 24, 100432.	3.2	8
153	COVIDâ€19 insights from transfusion medicine. British Journal of Haematology, 2020, 190, 715-717.	1.2	8
154	Combined haploidentical and cord blood transplantation for refractory severe aplastic anaemia and hypoplastic myelodysplastic syndrome. British Journal of Haematology, 2021, 193, 951-960.	1.2	8
155	Inhibition of blood group antibodies by soluble substances. Immunohematology, 2019, 35, 19-22.	0.2	8
156	Molecular basis of two novel and related highâ€prevalence antigens in the <scp>K</scp> ell blood group system, <scp>KUCI</scp> and <scp>KANT</scp> , and their serologic and spatial association with <scp>K</scp> 11 and <scp>KETI</scp> . Transfusion, 2013, 53, 2872-2881.	0.8	7
157	Fullâ€length nucleotide sequences of 30 common <i>SLC44A2</i> alleles encoding human neutrophil antigenâ€3. Transfusion, 2016, 56, 729-736.	0.8	7
158	How we evaluate red blood cell compatibility and transfusion support for patients with sickle cell disease undergoing hematopoietic progenitor cell transplantation. Transfusion, 2018, 58, 2483-2489.	0.8	7
159	Validated Reference Panel from Renewable Source of Genomic DNA Available for Standardization of Blood Group Genotyping. Journal of Molecular Diagnostics, 2019, 21, 525-537.	1.2	7
160	Transfusion support during childbirth for a woman with anti-U and the <i>RHD*weak D type 4.0</i> allele. Immunohematology, 2021, 37, 1-4.	0.2	7
161	Rebound and overshoot of donorâ€specific antibodies to human leukocyte antigens (HLA) during desensitization with plasma exchanges in hematopoietic progenitor cell transplantation: A case report. Transfusion, 2021, 61, 1980-1986.	0.8	7
162	Recommendation for validation and quality assurance of nonâ€invasive prenatal testing for foetal blood groups and implications for ⟨scp⟩IVD⟨ scp⟩ risk classification according to ⟨scp⟩EU⟨ scp⟩ regulations. Vox Sanguinis, 2022, 117, 157-165.	0.7	7

#	Article	IF	CITATIONS
163	The Role of Lipoproteins in the Inactivation of Endotoxin by Serum. Transfusion Medicine and Hemotherapy, 1992, 19, 202-203.	0.7	6
164	Genetic variation of the whole <scp><i>ICAM4</i></scp> gene in <scp>C</scp> aucasians and <scp>A</scp> frican <scp>A</scp> mericans. Transfusion, 2014, 54, 2315-2324.	0.8	6
165	Acanthocytes in the McLeod phenotype of Xâ€linked chronic granulomatous disease. Transfusion, 2017, 57, 2307-2308.	0.8	6
166	Does transfusion of Asianâ€type DEL red blood cells to D– recipients cause D alloimmunization?. Transfusion, 2019, 59, 2455-2458.	0.8	6
167	COVID-19: risk of infection is high, independently of ABO blood group. Haematologica, 2020, 105, 2706-2708.	1.7	6
168	Molecular immunohaematology round table discussions at the AABB Annual Meeting, Denver 2013. Blood Transfusion, 2015, 13, 514-20.	0.3	6
169	Molecular immunohaematology round table discussions at the AABB Annual Meeting, Anaheim 2015. Blood Transfusion, 2016, 14, 557-565.	0.3	6
170	Inhibition of blood group antibodies by soluble substances. Immunohematology, 2019, 35, 19-22.	0.2	6
171	DEL. Blood Transfusion, 2020, 18, 159-162.	0.3	6
172	Association of anti-HSC70 autoantibodies with cutaneous ulceration and severe disease in juvenile dermatomyositis. Rheumatology, 2022, 61, 2969-2977.	0.9	6
173	Immunogenicity reloaded. Blood, 2009, 114, 3979-3980.	0.6	5
174	Specific amino acid substitutions cause distinct expression of JAL (RH48) and JAHK (RH53) antigens in RhCE and not in RhD. Transfusion, 2010, 50, 267-269.	0.8	5
175	Muddy waters in therapeutic plasma exchange. Transfusion, 2014, 54, 2157-2157.	0.8	5
176	Genotype frequency of human neutrophil antigenâ€3 polymorphisms in the <scp>Y</scp> i, <scp>H</scp> an, and <scp>T</scp> ibetan populations of <scp>C</scp> hina. Transfusion, 2016, 56, 737-742.	0.8	5
177	Can antiâ€A ₁ cause hemolysis?. Transfusion, 2018, 58, 3036-3037.	0.8	5
178	ACKR1 Alleles at 5.6 kb in a Well-Characterized Renewable US Food and Drug Administration (FDA) Reference Panel for Standardization of Blood Group Genotyping. Journal of Molecular Diagnostics, 2020, 22, 1272-1279.	1.2	5
179	SNP Genotyping and LD Testing in ERMAP: Revealing Scianna Blood Group Diversity in NIH Blood Donors. Blood, 2011, 118, 2322-2322.	0.6	5
180	Quality improvement with platelet additive solution for safer out-of-group platelet transfusions. Immunohematology, 2019, 35, 108-115.	0.2	5

#	Article	IF	CITATIONS
181	Completely converting a national blood supply to the use of safer plasma. Transfusion, 2001, 41, 1172b-1172.	0.8	4
182	Will MICA Glitter for Recipients of Kidney Transplants?. New England Journal of Medicine, 2007, 357, 1337-1339.	13.9	4
183	Genotyping of Red Blood Cell, Granulocyte and Platelet Antigens: Current Applications in the German-Speaking Countries., 2008,, 189-198.		4
184	Erythrocyte membrane antigen frequencies in patients with Type II congenital smell loss. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2015, 36, 146-152.	0.6	4
185	Serologic and molecular characterization of weak D type 29. Transfusion, 2017, 57, 2542-2544.	0.8	4
186	Critical Value Reporting in Transfusion Medicine. American Journal of Clinical Pathology, 2017, 147, 492-499.	0.4	4
187	Frameshift variations in the <scp><i>RHD</i></scp> coding sequence: Molecular mechanisms permitting protein expression. Transfusion, 2020, 60, 2737-2744.	0.8	4
188	How do you… decide which platelet bacterial risk mitigation strategy to select for your hospitalâ€based transfusion service?. Transfusion, 2020, 60, 675-681.	0.8	4
189	<scp>SCAR</scp> : The highâ€prevalence antigen 013.008 in the <scp>Scianna</scp> blood group system. Transfusion, 2021, 61, 246-254.	0.8	4
190	Modern Rhesus (Rh) typing in transfusion and pregnancy. Cmaj, 2021, 193, E124-E124.	0.9	4
191	A practical and effective strategy in East Asia to prevent antiâ€D alloimmunization in patients by C/c phenotyping of serologic RhDâ€negative blood donors. EJHaem, 2021, 2, 750-756.	0.4	4
192	Blutgruppen: Alloantigene auf Erythrozyten. , 2010, , 133-168.		4
193	Erytra blood group analyser and kode technology testing of SARSâ€CoVâ€2 antibodies among convalescent patients and vaccinated individuals. EJHaem, 2022, 3, 72-79.	0.4	4
194	Leukocyte Depletion of Red Cell Components Prevents Exposure of Transfusion Recipients to Neutrophil Elastase. Vox Sanguinis, 2000, 78, 19-27.	0.7	4
195	Lipopolysaccharide (LPS)-free conditions allow growth and purification of postnatal brain macrophages (microglia). Journal of Immunological Methods, 1989, 116, 147.	0.6	3
196	Stimulation of human T cells via anti-T cell receptor monoclonal antibody BMA031: Distinct cellular events involving interleukin-2 receptor and lymphocyte function antigen 1. Cellular Immunology, 1991, 138, 150-164.	1.4	3
197	Transfusion of fresh vs. older red blood cells in the context of infection. ISBT Science Series, 2015, 10, 275-285.	1.1	3
198	A genetic marker of the ACKR1 gene is present in patients with Type II congenital smell loss who have type I hyposmia and hypogeusia. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2016, 37, 484-489.	0.6	3

#	Article	IF	CITATIONS
199	Two distinct <i>RHCE</i> alleles in cis to <i>weak D type 31</i> alleles in individuals from different ethnicities. Transfusion, 2018, 58, 2465-2466.	0.8	3
200	HNA-3a and HNA-3b antigens among 9 ethnic populations and the Han population in Southwest China. Journal of Translational Medicine, 2018, 16, 67.	1.8	3
201	Pharmacogenomics with red cells: a model to study protein variants of drug transporter genes. Vox Sanguinis, 2021, 116, 141-154.	0.7	3
202	Two molecular polymorphisms to detect the (C)ce(s) type 1 haplotype. Blood Transfusion, 2014, 12, 136-7.	0.3	3
203	COVID-19 Antibody Detection and Assay Performance Using Red Cell Agglutination. Microbiology Spectrum, 2021, 9, e0083021.	1.2	3
204	Coordinator's report: complement regulatory proteins. Transfusion Clinique Et Biologique, 1997, 4, 117-119.	0.2	2
205	Red cell alloimmunisation: incidence and prevention. Lancet Haematology, the, 2016, 3, e260-e261.	2.2	2
206	Flashback 1997: collection of hematopoietic progenitor cells by peripheral blood apheresis after stimulation with granulocyte–colonyâ€stimulating factor. Transfusion, 2017, 57, 3067-3068.	0.8	2
207	Red blood cell sedimentation of Apheresis Granulocytes. Transfusion, 2017, 57, 2551-2552.	0.8	2
208	Molecular analysis of the ICAM4 gene in an autochthonous East African population. Transfusion, 2019, 59, 1880-1881.	0.8	2
209	Mosaicism by somatic non-functional mutations: one cell lineage at a time. Haematologica, 2019, 104, 425-427.	1.7	2
210	The phylogeny of 48 alleles, experimentally verified at 21Âkb, and its application to clinical allele detection. Journal of Translational Medicine, 2019, 17, 43.	1.8	2
211	Red Cell Transfusions in the Genomics Era. Seminars in Hematology, 2019, 56, 236-240.	1.8	2
212	A null allele caused by a fourâ€baseâ€pair duplication within the <i>RHCE</i> gene encoding a D– – phenotype. Transfusion, 2021, 61, E23-E25.	0.8	2
213	When recombinant proteins can replace rare red cells in immunohematology workups. Transfusion, 2021, 61, 2204-2212.	0.8	2
214	Excellent Engraftment and Long-Term Survival in Patients with Severe Aplastic Anemia (SAA) Undergoing Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) with Haplo-Identical CD34+ Cells Combined with a Single Umbilical Cord Blood Unit. Blood, 2015, 126, 5516-5516.	0.6	2
215	A rewarding fresh look at routine blood group data. Blood Transfusion, 2008, 6, 182-3.	0.3	2
216	An update on the Scianna blood group system. Immunohematology, 2019, 35, 48-50.	0.2	2

#	Article	IF	Citations
217	Rapid Engraftment, Immune Recovery, and Resolution of Transfusion Dependence in Treatment-Refractory Severe Aplastic Anemia Following Transplantation with Ex Vivo Expanded Umbilical Cord Blood (Omidubicel). Blood, 2020, 136, 37-38.	0.6	2
218	Transfusion Clips: a new section for TRANSFUSION. Transfusion, 2012, 52, 1168-1168.	0.8	1
219	Transfused neutrophils home to a joint with fungal infection. Transfusion, 2016, 56, 2655-2656.	0.8	1
220	<pre><scp><i>NG_007494.1(RHD):c.[4A>T;5G>C;6_7insG]</i></scp> with an <scp>RhD</scp>â€negative phenotype. Transfusion, 2020, 60, E45-E47.</pre>	0.8	1
221	Cataloguing experimentally confirmed 80.7Âkb-long ACKR1 haplotypes from the 1000 Genomes Project database. BMC Bioinformatics, 2021, 22, 273.	1.2	1
222	What constitutes the most cautious approach for a pregnant person with weak D type 4.0?. Cmaj, 2021, 193, E916-E916.	0.9	1
223	Complement Inhibition Using Eculizumab Overcomes Platelet Transfusion Refractoriness in Allo-Immunized Patients Receiving HLA Mismatched Platelets. Blood, 2016, 128, 3840-3840.	0.6	1
224	Rapid Engraftment and Immune Recovery in Treatment Refractory Severe Aplastic Anemia Patients Undergoing Ex Vivo Nicotinamide-Expanded (NAM-Expanded) Unrelated Cord Blood Transplantation. Blood, 2018, 132, 5789-5789.	0.6	1
225	Molecular immunohaematology round table discussions at the AABB Annual Meeting, Orlando 2016. Blood Transfusion, 2018, 16, 447-456.	0.3	1
226	A resource-conserving serologic and highthroughput molecular approach to screen for blood donors with an IN:-5 phenotype. Immunohematology, 2020, 36, 129-132.	0.2	1
227	Proceed with care: the "uncommon" serologic weak D phenotypes. Blood Transfusion, 2021, 19, 272-276.	0.3	1
228	Results of the DGTI workshop on the evaluation of the reactivity of monoclonal anti-D. Beitr \tilde{A} ge Zur Infusionstherapie = Contributions To Infusion Therapy, 1992, 30, 382-7.	0.0	1
229	Results of the DGTI Workshop on the Evaluation of the Reactivity of Monoclonal Anti-D. Transfusion Medicine and Hemotherapy, 1992, 19, 12-16.	0.7	0
230	Quality of platelet concentrates. Transfusion, 1998, 38, 799-800.	0.8	0
231	118-P Allele frequency assessment of 18 minor histocompatibility antigens (Mhags) in African Americans. Human Immunology, 2011, 72, S97.	1.2	0
232	Group O plasma as a media supplement for CARâ€T cells and other adoptive T ell therapies. Transfusion, 2020, 60, 1004-1014.	0.8	0
233	<i>ABO*B.01+c.464A>C</i> represents a missense variation in the <i>ABO</i> gene and encodes a weak B phenotype. Transfusion, 2021, 61, E59-E61.	0.8	0
234	Medizinisch-naturwissenschaftliche Grundlagen. , 2002, , 87-98.		0

#	Article	IF	Citations
235	Blutgruppen: Alloantigene auf Erythrozyten. , 2004, , 145-185.		0
236	Rhesus Box Variation: Multiple RHD Deletion Events and Implications for Testing RHD Heterozygosity Blood, 2004, 104, 2705-2705.	0.6	0
237	HLA Alloantibody Persistence and De Novo Production of HLA Alloantibodies of Donor Origin Following Reduced Intensity Allogeneic Hematopoietic Stem Cell Transplantation Blood, 2010, 116, 1109-1109.	0.6	0
238	Minor Histocompatibility Antigen Mismatch and Incidence of Graft Versus Host Disease, Event-Free, and Overall Survival in Patients Undergoing Unrelated Donor Allogeneic Hematopoietic Cell Transplantation. Blood, 2012, 120, 4201-4201.	0.6	0
239	Immunohematologic Complications after Nonmyeloablative Hematopoietic Progenitor Cell Transplantation in Patients with Sickle Cell Disease. Blood, 2016, 128, 3404-3404.	0.6	0
240	Spectrum and Clinical Significance of HLA Class I Alleles and Their Somatic Mutations in Immune Aplastic Anemia. Blood, 2019, 134, 3738-3738.	0.6	0
241	An outcome-based review of an accredited Specialist in Blood Banking (SBB) program: 25 years and counting. Immunohematology, 2020, 36, 7-13.	0.2	0
242	<i>NM_000148.4(<scp>FUT1</scp>):c.[<scp>229C</scp>>T;<scp>302C</scp>>T]</i> with 2 missense variations in the <scp><i>FUT1</i></scp> gene associated with a paraâ€Bombay phenotype. Transfusion, 2022, 62, E5.	0.8	0
243	COVID-19 Antibody Detection and Assay Performance Using Red Cell Agglutination. Blood, 2021, 138, 1878-1878.	0.6	0
244	Immune Hemolysis after a Hematopoietic Progenitor Cell Transplantation for Sickle Cell Disease: A Case Report. Blood, 2020, 136, 20-21.	0.6	0