
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3176465/publications.pdf Version: 2024-02-01

DAN CIRSON

#	Article	IF	CITATIONS
1	X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG))]. Science, 1985, 230, 412-417.	12.6	410
2	What do we know about the reduction of Pt(IV) pro-drugs?. Journal of Inorganic Biochemistry, 2012, 117, 220-229.	3.5	307
3	Platinum(<scp>iv</scp>) anticancer prodrugs – hypotheses and facts. Dalton Transactions, 2016, 45, 12983-12991.	3.3	230
4	Pt(<scp>iv</scp>) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate. Chemical Communications, 2012, 48, 847-849.	4.1	174
5	A Multiâ€action and Multiâ€target Ru ^{II} –Pt ^{IV} Conjugate Combining Cancerâ€Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angewandte Chemie - International Edition, 2020, 59, 7069-7075.	13.8	172
6	The mechanism of action of platinum anticancer agents—what do we really know about it?. Dalton Transactions, 2009, , 10681.	3.3	169
7	Pt(<scp>iv</scp>) derivatives of cisplatin and oxaliplatin with phenylbutyrate axial ligands are potent cytotoxic agents that act by several mechanisms of action. Chemical Science, 2016, 7, 2381-2391.	7.4	155
8	Is Glutathione the Major Cellular Target of Cisplatin? A Study of the Interactions of Cisplatin with Cancer Cell Extracts. Journal of Medicinal Chemistry, 2009, 52, 4319-4328.	6.4	125
9	Multi-action Pt(IV) anticancer agents; do we understand how they work?. Journal of Inorganic Biochemistry, 2019, 191, 77-84.	3.5	124
10	Triple action Pt(<scp>iv</scp>) derivatives of cisplatin: a new class of potent anticancer agents that overcome resistance. Chemical Science, 2018, 9, 4299-4307.	7.4	121
11	Interactions of cisplatin and transplatin with proteins. Journal of Inorganic Biochemistry, 2002, 91, 306-311.	3.5	118
12	Facile Preparation of Monoâ€; Di―and Mixed arboxylato Platinum(IV) Complexes for Versatile Anticancer Prodrug Design. Chemistry - A European Journal, 2013, 19, 1672-1676.	3.3	108
13	Novel Soluble Cationictrans-Diaminedichloroplatinum(II) Complexes that Are Active against Cisplatin Resistant Ovarian Cancer Cell Lines. Journal of Medicinal Chemistry, 2002, 45, 5189-5195.	6.4	104
14	Reduction of <i>cis,trans,cis</i> -[PtCl ₂ (OCOCH ₃) ₂ (NH ₃) ₂] by Aqueous Extracts of Cancer Cells. Journal of Medicinal Chemistry, 2007, 50, 5554-5556.	6.4	100
15	A Quadrupleâ€Action Platinum(IV) Prodrug with Anticancer Activity Against KRAS Mutated Cancer Cell Lines. Angewandte Chemie - International Edition, 2017, 56, 11539-11544.	13.8	100
16	Dualâ€Targeting Dualâ€Action Platinum(IV) Platform for Enhanced Anticancer Activity and Reduced Nephrotoxicity. Angewandte Chemie - International Edition, 2019, 58, 8109-8114.	13.8	81
17	Platinum(IV) Prodrugs with Haloacetato Ligands in the Axial Positions can Undergo Hydrolysis under Biologically Relevant Conditions. Angewandte Chemie - International Edition, 2013, 52, 6059-6062.	13.8	80
18	New insights into the molecular and epigenetic effects of antitumor Pt(IV)-valproic acid conjugates in human ovarian cancer cells. Biochemical Pharmacology, 2015, 95, 133-144.	4.4	78

#	Article	IF	CITATIONS
19	A mass spectral study of the binding of the anticancer drug cisplatin to ubiquitin. European Journal of Mass Spectrometry, 1999, 5, 501.	0.7	77
20	New reduction pathways for <i>ctc</i> -[PtCl ₂ (CH ₃ CO ₂) ₂ (NH ₃)(Am)] anticancer prodrugs. Chemical Communications, 2010, 46, 1842-1844.	4.1	76
21	Platinum(IV) anticancer agents; are we en route to the holy grail or to a dead end?. Journal of Inorganic Biochemistry, 2021, 217, 111353.	3.5	70
22	Cisplatinâ^'Protein Adducts Are Efficiently Removed by Glutathione but Not by 5â€~-Guanosine Monophosphate. Journal of the American Chemical Society, 2001, 123, 3171-3172.	13.7	69
23	Antitumor platinum(IV) derivatives of oxaliplatin with axial valproato ligands. Journal of Inorganic Biochemistry, 2014, 140, 72-79.	3.5	69
24	Novel Apoptosis-Inducingtrans-Platinum Piperidine Derivatives:Â Synthesis and Biological Characterization. Journal of Medicinal Chemistry, 2002, 45, 5196-5204.	6.4	64
25	Cellular interactions of platinum drugs. Inorganica Chimica Acta, 2012, 393, 75-83.	2.4	60
26	Potentiation of mitochondrial dysfunction in tumor cells by conjugates of metabolic modulator dichloroacetate with a Pt(IV) derivative of oxaliplatin. Journal of Inorganic Biochemistry, 2016, 156, 89-97.	3.5	60
27	A Lipophilic Pt(IV) Oxaliplatin Derivative Enhances Antitumor Activity. Journal of Medicinal Chemistry, 2016, 59, 9035-9046.	6.4	59
28	In vivo biodistribution of platinum-based drugs encapsulated into multi-walled carbon nanotubes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1465-1475.	3.3	56
29	The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biology, 2015, 4, 48-59.	9.0	55
30	A Subset of New Platinum Antitumor Agents Kills Cells by a Multimodal Mechanism of Action Also Involving Changes in the Organization of the Microtubule Cytoskeleton. Journal of Medicinal Chemistry, 2019, 62, 5176-5190.	6.4	48
31	Expanding the Arsenal of Pt ^{IV} Anticancer Agents: Multiâ€action Pt ^{IV} Anticancer Agents with Bioactive Ligands Possessing a Hydroxy Functional Group. Angewandte Chemie - International Edition, 2019, 58, 18218-18223.	13.8	47
32	On the Stability of Pt ^{IV} Proâ€Drugs with Haloacetato Ligands in the Axial Positions. Chemistry - A European Journal, 2015, 21, 3108-3114.	3.3	45
33	Drug–DNA interactions and novel drug design. Pharmacogenomics Journal, 2002, 2, 275-276.	2.0	44
34	Synthesis, characterization and in vitro and in vivo anticancer activity of Pt(<scp>iv</scp>) derivatives of [Pt(1S,2S-DACH)(5,6-dimethyl-1,10-phenanthroline)]. Dalton Transactions, 2017, 46, 7005-7019.	3.3	43
35	Epigenetic and antitumor effects of platinum(IV)-octanoato conjugates. Scientific Reports, 2017, 7, 3751.	3.3	38
36	Multiaction Pt(IV) Carbamate Complexes Can Codeliver Pt(II) Drugs and Amine Containing Bioactive Molecules. Inorganic Chemistry, 2020, 59, 5182-5193.	4.0	37

#	Article	IF	CITATIONS
37	Monofunctional platinum amine complexes destabilize DNA significantly. FEBS Journal, 1998, 256, 253-260.	0.2	35
38	Ligand effects on the binding of cis- and trans-[PtCl2Am1Am2] to proteins. Journal of Biological Inorganic Chemistry, 2003, 8, 167-175.	2.6	35
39	Peculiar mechanistic and structural features of the carboplatin–cytochrome c system revealed by ESI-MS analysis. Journal of Biological Inorganic Chemistry, 2008, 13, 755-764.	2.6	35
40	The timing of caffeic acid treatment with cisplatin determines sensitization or resistance of ovarian carcinoma cell lines. Redox Biology, 2017, 11, 170-175.	9.0	34
41	Cationic Nonsymmetric Transplatinum Complexes with Piperidinopiperidine Ligands. Preparation, Characterization, in Vitro Cytotoxicity, in Vivo Toxicity, and Anticancer Efficacy Studies. Journal of Medicinal Chemistry, 2006, 49, 4665-4673.	6.4	32
42	An Anticancer Pt ^{IV} Prodrug That Acts by Mechanisms Involving DNA Damage and Different Epigenetic Effects. Chemistry - A European Journal, 2019, 25, 5235-5245.	3.3	31
43	Platinum(IV)-Estramustine Multiaction Prodrugs Are Effective Antiproliferative Agents against Prostate Cancer Cells. Journal of Medicinal Chemistry, 2020, 63, 13861-13877.	6.4	30
44	Are Pt(IV) Prodrugs That Release Combretastatin A4 True Multi-action Prodrugs?. Journal of Medicinal Chemistry, 2021, 64, 11364-11378.	6.4	30
45	Trans labilization of am(m)ine ligands from platinum(II) complexes by cancer cell extracts. Journal of Biological Inorganic Chemistry, 2009, 14, 387-399.	2.6	28
46	Anthraquinone intercalators as carrier molecules for second-generation platinum anticancer drugs. European Journal of Medicinal Chemistry, 1997, 32, 823-831.	5.5	27
47	Studies on Cellular Accumulation of Satraplatin and Its Major Metabolite JM118 and Their Interactions with Glutathione. Molecular Pharmaceutics, 2010, 7, 2093-2102.	4.6	27
48	A Multiâ€action and Multiâ€ŧarget Ru ^{II} –Pt ^{IV} Conjugate Combining Cancerâ€Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angewandte Chemie, 2020, 132, 7135-7141.	2.0	25
49	Dualâ€Targeting Dualâ€Action Platinum(IV) Platform for Enhanced Anticancer Activity and Reduced Nephrotoxicity. Angewandte Chemie, 2019, 131, 8193-8198.	2.0	24
50	A Quadrupleâ€Action Platinum(IV) Prodrug with Anticancer Activity Against KRAS Mutated Cancer Cell Lines. Angewandte Chemie, 2017, 129, 11697-11702.	2.0	22
51	<i>trans</i> -Platinum(<scp>iv</scp>) pro-drugs that exhibit unusual resistance to reduction by endogenous reductants and blood serum but are rapidly activated inside cells: ¹ H NMR and XANES spectroscopy study. Dalton Transactions, 2020, 49, 7722-7736.	3.3	21
52	The trans labilization of cis-[PtCl2(13CH3NH2)2] by glutathione can be monitored at physiological pH by [1H,13C] HSQC NMR. Journal of Biological Inorganic Chemistry, 2006, 11, 179-188.	2.6	20
53	Pt(IV) Anticancer Prodrugs – A Tale of Mice and Men. ChemMedChem, 2021, 16, 2188-2191.	3.2	19
54	Acylphosphonamidates and ?-hydroxyiminophosphonamidates. Synthesis of N-acylphosphordiamidates by Beckmann rearrangement. Crystal structure of (E)-?-hydroxyiminobenzyl-1-pyrrolidinylphosphinate. Heteroatom Chemistry, 1996, 7, 515-520.	0.7	14

#	Article	IF	CITATIONS
55	Synthesis and Cytotoxicity of Water-Soluble Dual- and Triple-Action Satraplatin Derivatives: Replacement of Equatorial Chlorides of Satraplatin by Acetates. Inorganic Chemistry, 2019, 58, 16676-16688.	4.0	13
56	Expanding the Arsenal of Pt ^{IV} Anticancer Agents: Multiâ€action Pt ^{IV} Anticancer Agents with Bioactive Ligands Possessing a Hydroxy Functional Group. Angewandte Chemie, 2019, 131, 18386-18391.	2.0	11
57	Mass spectrometric studies of the formation and reactivity oftrans-[PtCl2(Am)(piperidinopiperidine)] · HCl complexes with ubiquitin. Rapid Communications in Mass Spectrometry, 2005, 19, 3666-3672.	1.5	9
58	Probing the Interactions of Cytotoxic [Pt(1 <i>S</i> ,2 <i>S</i> â€DACH)(5,6â€dimethylâ€1,10â€phenanthroline)] and Its Pt ^{IV} Derivatives with Human Serum. ChemMedChem, 2017, 12, 510-519.	3.2	8
59	Rearrangement and Fragmentation Reactions of α-Hydroxyiminophoshinates. On the Nature of the Metaphosphonate Intermediate Involved in Phosphonylations by α-Hydroxyiminophosphinate. Phosphorus, Sulfur and Silicon and the Related Elements, 1990, 49-50, 81-84.	1.6	6
60	Activation of trans geometry in bifunctional mononuclear platinum complexes by a non-bulky methylamine ligand. Journal of Inorganic Biochemistry, 2013, 126, 46-54.	3.5	6
61	Toxicity in tumor cells, DNA binding mode, and resistance to decomposition by sulfur nucleophiles of new dinuclear bifunctional trans-PtII complexes containing long alkane linkers. Pure and Applied Chemistry, 2012, 85, 343-354.	1.9	5
62	Oxidation of <i>cis</i> â€Ðiamminediacetato Pt ^{II} with Hydrogen Peroxide Can Give Rise to Two Isomeric Pt ^{IV} Products. Chemistry - A European Journal, 2020, 26, 9475-9480.	3.3	5
63	Structure and Reactivity of 2-Hydroxyiminobenzyl-2-oxo-4,4,5,5-tetramethyl[1,3,2]dioxaphospholanes. Phosphorus, Sulfur and Silicon and the Related Elements, 1989, 41, 433-437.	1.6	4
64	Dibenzofuran annulated 1-azepines: Synthesis and cytotoxicity. Synthetic Communications, 2020, 50, 438-445.	2.1	2
65	Study of the DNA binding mechanism and <i>in vitro</i> activity against cancer cells of iron(<scp>iii</scp>) and aluminium(<scp>iii</scp>) kojic acid derivative complexes. Dalton Transactions 2022	3.3	2