Xavier Bofill-De Ros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3175823/publications.pdf

Version: 2024-02-01

687363 794594 20 554 13 19 citations h-index g-index papers 26 26 26 937 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Flexible pri-miRNA structures enable tunable production of 5' isomiRs. RNA Biology, 2022, 19, 279-289.	3.1	5
2	RNA targeting using CasRx can prevent aminoglycoside-induced hearing loss. Molecular Therapy - Nucleic Acids, 2022, 28, 756-757.	5.1	0
3	Tumor IsomiR Encyclopedia (TIE): a pan-cancer database of miRNA isoforms. Bioinformatics, 2021, 37, 3023-3025.	4.1	13
4	IsomiRs: Expanding the miRNA repression toolbox beyond the seed. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194373.	1.9	43
5	Unification of miRNA and isomiR research: the mirGFF3 format and the mirtop API. Bioinformatics, 2020, 36, 698-703.	4.1	33
6	Novel, abundant Drosha isoforms are deficient in miRNA processing in cancer cells. RNA Biology, 2020, 17, 1603-1612.	3.1	4
7	AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nature Communications, 2020, 11, 2765.	12.8	56
8	3′ Uridylation Confers miRNAs with Non-canonical Target Repertoires. Molecular Cell, 2019, 75, 511-522.e4.	9.7	66
9	Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires. Cell Reports, 2019, 26, 447-459.e4.	6.4	42
10	DYRK1A modulates c-MET in pancreatic ductal adenocarcinoma to drive tumour growth. Gut, 2019, 68, 1465-1476.	12.1	52
11	QuagmiR: a cloud-based application for isomiR big data analytics. Bioinformatics, 2019, 35, 1576-1578.	4.1	23
12	Stress-Induced MicroRNA-708 Impairs Î ² -Cell Function and Growth. Diabetes, 2017, 66, 3029-3040.	0.6	39
13	Implications of MicroRNAs in Oncolytic Virotherapy. Frontiers in Oncology, 2017, 7, 142.	2.8	21
14	154. Applying Insights from Pri-miRNA Processing to shRNA Design. Molecular Therapy, 2016, 24, S61.	8.2	0
15	Guidelines for the optimal design of miRNA-based shRNAs. Methods, 2016, 103, 157-166.	3.8	63
16	Genome-wide miR-155 and miR-802 target gene identification in the hippocampus of Ts65Dn Down syndrome mouse model by miRNA sponges. BMC Genomics, 2015, 16, 907.	2.8	30
17	Late-phase miRNA-controlled oncolytic adenovirus for selective killing of cancer cells. Oncotarget, 2015, 6, 6179-6190.	1.8	16
18	MiR-148a- and miR-216a-regulated Oncolytic Adenoviruses Targeting Pancreatic Tumors Attenuate Tissue Damage Without Perturbation of miRNA Activity. Molecular Therapy, 2014, 22, 1665-1677.	8.2	33

#	Article	IF	CITATIONS
19	Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems. Cancers, 2011, 3, 368-395.	3.7	8
20	Controlling Adenoviral Replication to Induce Oncolytic Efficacy~!2009-11-11~!2010-01-02~!2010-05-26~!. The Open Gene Therapy Journal, 2010, 3, 15-23.	1.2	4