Xingxiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3175019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact-resistant membranes from electrospun fibers with a shear-thickening core. Materials Chemistry and Physics, 2022, 277, 125478.	4.0	4
2	Facile fabrication of high-performance PA66/MWNT nanocomposite fibers. Colloid and Polymer Science, 2022, 300, 509-519.	2.1	1
3	Facial fabrication of few-layer functionalized graphene with sole functional group through Diels–Alder reaction by ball milling. RSC Advances, 2022, 12, 17990-18003.	3.6	0
4	Research on long-chain alkanol etherified melamine-formaldehyde resin MicroPCMs for energy storage. Energy, 2021, 214, 119029.	8.8	8
5	Synthesis and characterization of hydrophobic reversible thermochromic MicroPCMs with amino resins shell for thermal energy storage. Energy and Buildings, 2021, 230, 110528.	6.7	11
6	Enhancement of physical and mechanical properties of polyamide 66 fibers using polysiloxaneâ€functionalized multiâ€walled carbon nanotubes. Journal of Applied Polymer Science, 2021, 138, 50170.	2.6	2
7	Preparation of <scp>3D</scp> crimped <scp>ZnO</scp> / <scp>PAN</scp> hybrid nanofiber mats with photocatalytic activity and antibacterial properties by blowâ€spinning. Journal of Applied Polymer Science, 2021, 138, 49908.	2.6	9
8	Reversible photochromic energy storage polyurea microcapsules via in-situ polymerization. Energy, 2021, 219, 119630.	8.8	38
9	Intelligent adjustment of light-to-thermal energy conversion efficiency of thermo-regulated fabric containing reversible thermochromic MicroPCMs. Chemical Engineering Journal, 2021, 408, 127276.	12.7	46
10	Synthesis of α-Fe2O3 double-layer hollow spheres with carbon coating using carbonaceous sphere templates for lithium ion battery anodes. Journal of Solid State Electrochemistry, 2021, 25, 267-278.	2.5	1
11	Fabrication of High Performance PET/TLCP Fibers through the Synergistic Interfacial Enhancement and Compatibilization of Functional 1D and 2D Carbon Nanomaterials. Macromolecular Materials and Engineering, 2021, 306, 2000661.	3.6	5
12	Fabrication and performance of shapeâ€stable phase change materials based on epoxy group crosslinking. Journal of Applied Polymer Science, 2021, 138, 50681.	2.6	0
13	Fabrication and Characterization of Poly(<i>n</i> -alkyl acrylic) Ester Shape-Stable Phase-Change Materials Based on UV Curing. ACS Applied Energy Materials, 2021, 4, 3358-3368.	5.1	10
14	Influences of PVA modification on performance of microencapsulated reversible thermochromic phase change materials for energy storage application. Solar Energy Materials and Solar Cells, 2021, 222, 110938.	6.2	9
15	Cellulose-based phase change fibres for thermal energy storage and management applications. Chemical Engineering Journal, 2021, 412, 128596.	12.7	23
16	Fabrication and Characterization of Electrospun Poly(acrylonitrile- <i>co</i> -vinylidene Chloride) Copolymer/Poly(<i>n</i> -tetradecyl acrylate- <i>co</i> -n-hexadecyl Acrylate) Sheath/Core Nanofiber-wrapped Thermo-regulated Filaments. ACS Applied Energy Materials, 2021, 4, 5359-5366.	5.1	4
17	Synthesis and photochromic behavior of comb-like acrylate polymer nanoparticle containing spiropyran. Dyes and Pigments, 2021, 189, 109237.	3.7	9
18	Suppressing Thermal Negative Effect and Maintaining High-Temperature Steady Electrical Performance of Triboelectric Nanogenerators by Employing Phase Change Material. ACS Applied Materials & Interfaces, 2021, 13, 41657-41668.	8.0	14

#	Article	IF	CITATIONS
19	Preparation of Polyethylene Terephthalate/Polyketone/Graphene Oxide Composite Fibers: Implications for High-Performance Polymer Composites Modified with Carbon Nanomaterials. ACS Applied Nano Materials, 2021, 4, 9768-9778.	5.0	3
20	Design and synthesis of microcapsules with cross-linking network supporting core for supercooling degree regulation. Energy and Buildings, 2021, 253, 111437.	6.7	12
21	Polyamide 66 fibers synergistically reinforced with functionalized graphene and multi-walled carbon nanotubes. Materials Chemistry and Physics, 2021, 271, 124898.	4.0	7
22	Synthesis and characterization of microencapsulated phase change materials with chitosan-based polyurethane shell. Carbohydrate Polymers, 2021, 273, 118629.	10.2	19
23	PVDF microspheres@PLLA nanofibers-based hybrid tribo/piezoelectric nanogenerator with excellent electrical output properties. Materials Advances, 2021, 2, 6011-6019.	5.4	7
24	Flexible thermoelectric nanodevices based on three-dimensional networks of poly(3,4-ethylenedioxythiophene) nanowires and graphene. High Performance Polymers, 2021, 33, 657-664.	1.8	0
25	Microencapsulation of oil soluble polyaspartic acid ester and isophorone diisocyanate and their application in selfâ€healing anticorrosive epoxy resin. Journal of Applied Polymer Science, 2020, 137, 48478.	2.6	14
26	Green fabrication of functionalized graphene via one-step method and its reinforcement for polyamide 66 fibers. Materials Chemistry and Physics, 2020, 240, 122288.	4.0	23
27	Superhydrophobic Covalent Organic Frameworks Prepared via Pore Surface Modifications for Functional Coatings under Harsh Conditions. ACS Applied Materials & Interfaces, 2020, 12, 2926-2934.	8.0	59
28	Properties of PEDOT nanowire/Te nanowire nanocomposites and fabrication of a flexible thermoelectric generator. RSC Advances, 2020, 10, 33965-33971.	3.6	4
29	Preparation, Morphology, and Thermal Performance of Microencapsulated Phase Change Materials with a MF/SiO ₂ Composite Shell. Energy & Fuels, 2020, 34, 16819-16830.	5.1	19
30	Mace-like carbon fibers@Fe3O4@carbon composites as anode materials for lithium-ion batteries. Ionics, 2020, 26, 5923-5934.	2.4	9
31	Thermal energy regulated and thermochromic composite film with temperature-sensitive "breathable― stomata. Journal of Materials Science, 2020, 55, 12921-12939.	3.7	10
32	Enhancing solar–thermal–electric energy conversion based on m-PEGMA/GO synergistic phase change aerogels. Journal of Materials Chemistry A, 2020, 8, 13207-13217.	10.3	42
33	Polyâ€ <scp>l</scp> â€Lactic Acid/Graphene Electrospun Composite Nanofibers for Wearable Sensors. Energy Technology, 2020, 8, 1901252.	3.8	27
34	Fabrication of high-strength PET fibers modified with graphene oxide of varying lateral size. Journal of Materials Science, 2020, 55, 8940-8953.	3.7	17
35	Fabrication and characterization of hexadecyl acrylate cross-linked phase change microspheres. E-Polymers, 2020, 20, 69-75.	3.0	3
36	Preparation and properties of shape-stabilized phase change material cellulose benzoate-g-polyoxyethylene (2) hexadecyl ether with potential for thermal energy storage. Textile Reseach Journal, 2019, 89, 1512-1521.	2.2	1

#	Article	IF	CITATIONS
37	Free-standing dual-network red phosphorus@porous multichannel carbon nanofibers/carbon nanofibers/carbon nanotubes as a stable anode for lithium-ion batteries. Electrochimica Acta, 2019, 322, 134696.	5.2	37
38	Reversible Photochromic Nanofiber Membrane Containing Comb‣ike Poly(octadecyl acrylate) Nanoparticles Used for Ultraviolet Intensity Indicator. Macromolecular Materials and Engineering, 2019, 304, 1900299.	3.6	9
39	Synthesis and properties of self-assembled ultralong core-shell Si3N4/SiO2 nanowires by catalyst-free technique. Ceramics International, 2019, 45, 20040-20045.	4.8	13
40	Amphiphilic cellulose for enhancing the antifouling and separation performances of poly (acrylonitrile-co-methyl acrylate) ultrafiltration membrane. Journal of Membrane Science, 2019, 591, 117276.	8.2	23
41	Facile Fabrication of PA66/GO/MWNTs-COOH Nanocomposites and Their Fibers. Fibers, 2019, 7, 69.	4.0	8
42	Fabrication and Characterization of Novel Shape-Stabilized Phase Change Materials Based on P(TDA-co-HDA)/GO Composites. Polymers, 2019, 11, 1113.	4.5	3
43	Electromagnetic shielding of ultrathin, lightweight and strong nonwoven composites decorated by a bandage-style interlaced layer electropolymerized with polyaniline. Journal of Materials Science: Materials in Electronics, 2019, 30, 20420-20431.	2.2	9
44	Fabrication and characterization of conductive microcapsule containing phase change material. E-Polymers, 2019, 19, 519-526.	3.0	4
45	Electrostatic Assembly of a Titanium Dioxide@Hydrophilic Poly(phenylene sulfide) Porous Membrane with Enhanced Wetting Selectivity for Separation of Strongly Corrosive Oil–Water Emulsions. ACS Applied Materials & Interfaces, 2019, 11, 35479-35487.	8.0	62
46	Multiresponsive Shape-Stabilized Hexadecyl Acrylate-Grafted Graphene as a Phase Change Material with Enhanced Thermal and Electrical Conductivities. ACS Applied Materials & Interfaces, 2019, 11, 8982-8991.	8.0	47
47	Preparation of MnO2@P(AN-VDC)/AC composite fibers for high capacity formaldehyde removal. Materials Letters, 2019, 242, 51-54.	2.6	6
48	Design of a Janus F-TiO ₂ @PPS Porous Membrane with Asymmetric Wettability for Switchable Oil/Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 22408-22418.	8.0	122
49	Adhesive-free in situ synthesis of a coral-like titaniumÂdioxide@poly(phenylene sulfide) microporous membrane for visible-light photocatalysis. Chemical Engineering Journal, 2019, 374, 1382-1393.	12.7	48
50	Polyamide 66 and amino-functionalized multi-walled carbon nanotube composites and their melt-spun fibers. Journal of Materials Science, 2019, 54, 11056-11068.	3.7	12
51	Synthesis and electrochemical properties of $\hat{I}\pm$ -Fe2O3 porous microrods as anode for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 794, 333-340.	5.5	18
52	Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Applied Energy, 2019, 247, 615-629.	10.1	95
53	Elucidating synthesis of noble metal nanoparticles/graphene oxide in free-scavenger Î ³ -irradiation. Current Applied Physics, 2019, 19, 780-786.	2.4	8
54	Radiation resistance of carbon fiber-reinforced epoxy composites optimized synergistically by carbon nanotubes in interface area/matrix. Composites Part B: Engineering, 2019, 172, 447-457.	12.0	35

#	Article	IF	CITATIONS
55	Lightweight sandwich fiber-welded foam-like nonwoven fabrics/graphene composites for electromagnetic shielding. Materials Chemistry and Physics, 2019, 232, 246-253.	4.0	11
56	Functionalized carbon nanotubes as phase change materials with enhanced thermal, electrical conductivity, light-to-thermal, and electro-to-thermal performances. Carbon, 2019, 149, 263-272.	10.3	81
57	Fiber-welded ciliated-like nonwoven fabric nano-composite multiscale architectures for superior mechanical and electromagnetic shielding behaviors. Composites Part A: Applied Science and Manufacturing, 2019, 121, 321-329.	7.6	23
58	Gamma irradiation and microemulsion assisted synthesis of monodisperse flower-like platinum-gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sensors and Actuators B: Chemical, 2019, 287, 267-277.	7.8	48
59	Catalyst-free large-scale synthesis of composite SiC@SiO ₂ /carbon nanofiber mats by blow-spinning. Journal of Materials Chemistry C, 2019, 7, 15233-15242.	5.5	15
60	Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO- <i>g</i> -PAO@Ag ⁺ /Ag Composite Nanofibrous Membranes. ACS Applied Materials & Interfaces, 2019, 11, 46920-46929.	8.0	26
61	Enhanced Thermal-to-Flexible Phase Change Materials Based on Cellulose/Modified Graphene Composites for Thermal Management of Solar Energy. ACS Applied Materials & Interfaces, 2019, 11, 45832-45843.	8.0	83
62	Bioinspired Superwettable Covalent Organic Framework Nanofibrous Composite Membrane with a Spindle-Knotted Structure for Highly Efficient Oil/Water Emulsion Separation. Langmuir, 2019, 35, 16545-16554.	3.5	49
63	SMA-Assisted Exfoliation of Graphite by Microfluidization for Efficient and Large-Scale Production of High-Quality Graphene. Nanomaterials, 2019, 9, 1653.	4.1	15
64	Bead nano-necklace spheres on 3D carbon nanotube scaffolds for high-performance electromagnetic-interference shielding. Chemical Engineering Journal, 2019, 360, 1241-1246.	12.7	34
65	Direct Liquid Phase Exfoliation of Graphite to Produce Few-Layer Graphene by Microfluidization. Journal of Nanoscience and Nanotechnology, 2019, 19, 2078-2086.	0.9	23
66	Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Applied Energy, 2018, 217, 281-294.	10.1	192
67	Low-temperature nanowelding ultrathin silver nanowire sandwiched between polydopamine-functionalized graphene and conjugated polymer for highly stable and flexible transparent electrodes. Chemical Engineering Journal, 2018, 345, 260-270.	12.7	68
68	The continuous flexible three dimensional curly carbon-based hybrid nanofibers with good resilience and electrochemical performance. Materials and Design, 2018, 147, 114-121.	7.0	5
69	Enhanced sheet-sheet welding and interfacial wettability of 3D graphene networks as radiation protection in gamma-irradiated epoxy composites. Composites Science and Technology, 2018, 157, 57-66.	7.8	30
70	Fabrication and characterization of diethylene glycol hexadecyl ether-grafted graphene oxide as a form-stable phase change material. Thermochimica Acta, 2018, 661, 166-173.	2.7	10
71	Preparation of biâ€continuous poly(acrylonitrileâ€ <i>co</i> â€methyl acrylate) microporous membranes by a thermally induced phase separation method. Journal of Applied Polymer Science, 2018, 135, 46173.	2.6	14
72	3D graphene foams/epoxy composites with double-sided binder polyaniline interlayers for maintaining excellent electrical conductivities and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2018, 110, 246-257.	7.6	29

#	Article	IF	CITATIONS
73	Fabrication and characterization of core–shell novel PU microcapsule using TDI trimer for release system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 138-144.	4.7	22
74	Homogeneous synthesis of cellulose acrylate- g -poly (n -alkyl acrylate) solid–solid phase change materials via free radical polymerization. Carbohydrate Polymers, 2018, 193, 129-136.	10.2	28
75	Thermoelectric behavior of PEDOT:PSS/CNT/graphene composites. Journal of Polymer Engineering, 2018, 38, 381-389.	1.4	17
76	Preparation and Properties of Narrowly Dispersed Polyurethane Nanocapsules Containing Essential Oil via Phase Inversion Emulsification. Journal of Agricultural and Food Chemistry, 2018, 66, 10799-10807.	5.2	17
77	Facile preparation and thermoelectric properties of PEDOT nanowires/Bi2Te3 nanocomposites. Journal of Materials Science: Materials in Electronics, 2018, 29, 17367-17373.	2.2	5
78	Properties and Fabrication of PA66/Surface-Modified Multi-Walled Nanotubes Composite Fibers by Ball Milling and Melt-Spinning. Polymers, 2018, 10, 547.	4.5	15
79	Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity. Energy, 2018, 159, 857-869.	8.8	68
80	Superhydrophilic and underwater superoleophobic poly (acrylonitrile-co-methyl acrylate) membrane for highly efficient separation of oil-in-water emulsions. Journal of Membrane Science, 2018, 564, 712-721.	8.2	56
81	Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydrate Polymers, 2018, 200, 602-610.	10.2	64
82	Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization. Polymers, 2018, 10, 172.	4.5	11
83	Poly(mono/diethylene glycol n-tetradecyl ether vinyl ether)s with Various Molecular Weights as Phase Change Materials. Polymers, 2018, 10, 197.	4.5	2
84	Novel Dual-Component Microencapsulated Hydrophobic Amine and Microencapsulated Isocyanate Used for Self-Healing Anti-Corrosion Coating. Polymers, 2018, 10, 319.	4.5	38
85	Effects of Fatty Acid Anhydride on the Structure and Thermal Properties of Cellulose-g-Polyoxyethylene (2) Hexadecyl Ether. Polymers, 2018, 10, 498.	4.5	3
86	Fabrication of a PPS Microporous Membrane for Efficient Water-in-Oil Emulsion Separation. Langmuir, 2018, 34, 10580-10590.	3.5	51
87	Fabrication and Performance of Composite Microencapsulated Phase Change Materials with Palmitic Acid Ethyl Ester as Core. Polymers, 2018, 10, 726.	4.5	10
88	Biodegradable Transparent Substrate Based on Edible Starch–Chitosan Embedded with Nature-Inspired Three-Dimensionally Interconnected Conductive Nanocomposites for Wearable Green Electronics. ACS Applied Materials & Interfaces, 2018, 10, 23037-23047.	8.0	68
89	Preparation and properties of polyaniline/viscose fiber adducts. Polymer Composites, 2017, 38, 782-788.	4.6	2
90	Fabrication and properties of graphene oxide-grafted-poly(hexadecyl acrylate) as a solid-solid phase change material. Composites Science and Technology, 2017, 149, 262-268.	7.8	47

#	Article	IF	CITATIONS
91	Thermo-responsive PVDF/PSMA composite membranes with micro/nanoscale hierarchical structures for oil/water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 305-316.	4.7	39
92	Microencapsulated Phase Change Materials in Solar-Thermal Conversion Systems: Understanding Geometry-Dependent Heating Efficiency and System Reliability. ACS Nano, 2017, 11, 721-729.	14.6	98
93	Microstructure regulation of microencapsulated bio-based <i>n</i> -dodecanol as phase change materials <i>via in situ</i> polymerization. New Journal of Chemistry, 2017, 41, 14696-14707.	2.8	27
94	Effects of Polyvinyl Alcohol Modification on Microstructure, Thermal Properties and Impermeability of Microencapsulated <i>n</i> -Dodecanol as Phase Change Material. ChemistrySelect, 2017, 2, 9369-9376.	1.5	8
95	Microencapsulation and Morphological Characterization of Renewable Microencapsulated Phaseâ€Change Materials with Cellulose Diacetate Shell. ChemistrySelect, 2017, 2, 5917-5923.	1.5	2
96	Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites. Energy, 2017, 138, 157-166.	8.8	48
97	Effects of oil-soluble etherified melamine-formaldehyde prepolymers on in situ microencapsulation and macroencapsulation of n-dodecanol. New Journal of Chemistry, 2017, 41, 9424-9437.	2.8	32
98	Liquid phase exfoliation of graphite into few-layer graphene by sonication and microfluidization. Materials Express, 2017, 7, 491-499.	0.5	32
99	Structure and properties of poly(acrylonitrileâ€ <i>co</i> â€methyl acrylate) membranes prepared via thermally induced phase separation. Journal of Applied Polymer Science, 2016, 133, .	2.6	6
100	Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials. Energy, 2016, 106, 221-230.	8.8	24
101	Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance. Nano Energy, 2016, 24, 158-164.	16.0	56
102	Mussel-Inspired Polydopamine-Functionalized Graphene as a Conductive Adhesion Promoter and Protective Layer for Silver Nanowire Transparent Electrodes. Langmuir, 2016, 32, 5365-5372.	3.5	56
103	Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials. Thermochimica Acta, 2016, 633, 161-169.	2.7	12
104	Preparation of polyaniline-coated polyacrylonitrile fiber mats and their application to Cr(VI) removal. Synthetic Metals, 2016, 222, 255-266.	3.9	36
105	A novel PVDF/graphene composite membrane based on electrospun nanofibrous film for oil/water emulsion separation. Composites Communications, 2016, 2, 5-8.	6.3	39
106	Synthesis and characterization of cellulose-g-polyoxyethylene (2) hexadecyl ether solid–solid phase change materials. Cellulose, 2016, 23, 1663-1674.	4.9	21
107	Design, controlled fabrication and characterization of narrow-disperse macrocapsules containing Micro/NanoPCMs. Materials and Design, 2016, 99, 225-234.	7.0	22
108	Fabrication and wet spinning of a fully aromatic meta-polybenzimidazole. High Performance Polymers, 2016, 28, 288-295.	1.8	4

#	Article	IF	CITATIONS
109	Thermo-regulated sheath/core submicron fiber with poly(diethylene glycol hexadecyl ether acrylate) as a core. Textile Reseach Journal, 2016, 86, 493-501.	2.2	17
110	Graphene-Based Film Reduced by a Chemical and Thermal Synergy Method as a Transparent Conductive Electrode. Science of Advanced Materials, 2016, 8, 1066-1073.	0.7	8
111	Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell. Energy, 2015, 87, 86-94.	8.8	48
112	Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. Journal of Materials Science, 2015, 50, 2797-2805.	3.7	54
113	Poly(styrene–maleic anhydride) functionalized graphene oxide. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
114	Shape-stabilized phase change materials based on poly(ethylene-graft-maleic anhydride)-g-alkyl alcohol comb-like polymers. Solar Energy Materials and Solar Cells, 2015, 143, 21-28.	6.2	44
115	Chemical synthesis and characterization of dodecylbenzene sulfonic acid-doped polyaniline/viscose fiber. RSC Advances, 2015, 5, 44687-44695.	3.6	12
116	Novel dye-containing copolyimides: synthesis, characterization and effect of chain entanglements on developed electrospun nanofiber morphologies. Journal of Polymer Research, 2015, 22, 1.	2.4	6
117	Conductive polypyrrole/viscose fiber composites. Carbohydrate Polymers, 2015, 127, 332-339.	10.2	28
118	Microencapsulation and characterization of polyamic acid microcapsules containing <l>n</l> -octadecane via electrospraying method. Materials Express, 2015, 5, 480-488.	0.5	6
119	A Novel Method for the Preparation of Narrow-Disperse Nanoencapsulated Phase Change Materials by Phase Inversion Emulsification and Suspension Polymerization. Industrial & Engineering Chemistry Research, 2015, 54, 9307-9313.	3.7	23
120	Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery. Journal of Power Sources, 2015, 299, 255-264.	7.8	75
121	Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide. Composites Part A: Applied Science and Manufacturing, 2015, 68, 140-148.	7.6	93
122	Influences of Lateral Size on the Properties of Graphene Based Materials and Poly(vinylbutyral)/Graphene Composite Materials. Science of Advanced Materials, 2015, 7, 1213-1220.	0.7	2
123	Effect of surface treatment on surface characteristics of carbon fibers and interfacial bonding of epoxy resin composites. Fibers and Polymers, 2014, 15, 2395-2403.	2.1	9
124	Functionalized multiwalled carbon nanotubes in mild polyphosphoric acid/phosphorous pentoxide/phosphoric acid and their composites with epoxy resin. Polymer Composites, 2014, 35, 1275-1284.	4.6	4
125	Quantitative Analysis of Adulterations in Oat Flour by FT-NIR Spectroscopy, Incomplete Unbalanced Randomized Block Design, and Partial Least Squares. Journal of Analytical Methods in Chemistry, 2014, 2014, 1-5.	1.6	14
126	Thermal performance and crystallization behavior of poly(ethylene glycol) hexadecyl ether in confined environment. Polymer International, 2014, 63, 982-988.	3.1	14

#	Article	IF	CITATIONS
127	Structure and properties of mixtures based on long chain polyacrylate and 1-alcohol composites. Materials Chemistry and Physics, 2014, 143, 1069-1074.	4.0	10
128	Fracture toughness of graphene. Nature Communications, 2014, 5, 3782.	12.8	567
129	Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage. Energy, 2014, 68, 160-166.	8.8	78
130	Crystalline structure and phase behavior of N-alkylated polypyrrole comb-like polymers. CrystEngComm, 2014, 16, 7090.	2.6	20
131	Fabrication and Performances of Microencapsulated <i>n</i> -Alkanes with Copolymers Having <i>n</i> -Octadecyl Side Chains As Shells. Industrial & Engineering Chemistry Research, 2014, 53, 1678-1687.	3.7	17
132	Composition and Characterization of Thermoregulated Fiber Containing Acrylic-Based Copolymer Microencapsulated Phase-Change Materials (MicroPCMs). Industrial & Engineering Chemistry Research, 2014, 53, 5413-5420.	3.7	39
133	Fabrication, Characterization and Suppression of Supercooling in Microencapsulated <i>n</i> -Octadecane with Methyl Methacrylate-Octadecyl Methacrylate Copolymer as Shell. Science of Advanced Materials, 2014, 6, 120-127.	0.7	7
134	Coaxial Electrospun Thermo-Regulated Sheath/Core Nanofibers with a Comb-Like Polymer Core. Science of Advanced Materials, 2014, 6, 2640-2645.	0.7	2
135	Fabrication, characterization, and supercooling suppression of nanoencapsulated n-octadecane with methyl methacrylate–octadecyl methacrylate copolymer shell. Colloid and Polymer Science, 2013, 291, 1705-1712.	2.1	28
136	Chain packing and phase transition of N-hexacosylated polyethyleneimine comb-like polymer: A combined investigation by synchrotron X-ray scattering and FTIR spectroscopy. Polymer, 2013, 54, 6261-6266.	3.8	15
137	Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage. Energy, 2013, 57, 607-614.	8.8	61
138	Preparation and Properties of Microencapsulated Phase Change Materials Containing Two-Phase Core Materials. Industrial & Engineering Chemistry Research, 2013, 52, 14706-14712.	3.7	37
139	Crystal structure and thermal property of polyethylene glycol octadecyl ether. Thermochimica Acta, 2013, 558, 83-86.	2.7	17
140	Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials. Thermochimica Acta, 2013, 570, 1-7.	2.7	48
141	Fabrication and properties of poly(polyethylene glycol octadecyl ether methacrylate). Thermochimica Acta, 2013, 574, 116-120.	2.7	26
142	The production of a melt-spun functionalized graphene/poly(Îμ-caprolactam) nanocomposite fiber. Composites Science and Technology, 2013, 81, 61-68.	7.8	42
143	Structure and thermal performance of poly(styrene-co-maleic anhydride)-g-alkyl alcohol comb-like copolymeric phase change materials. Thermochimica Acta, 2013, 564, 34-38.	2.7	34
144	Removal of formaldehyde from overactivated arbonâ€fiberâ€loaded biological enzyme. Journal of Applied Polymer Science, 2013, 130, 2619-2623.	2.6	4

#	Article	IF	CITATIONS
145	Structures and properties of thermoregulated acrylonitrile–methyl acrylate sheet containing microphase change materials. Polymer Composites, 2013, 34, 641-649.	4.6	4
146	Facile Synthesis of Highly Photoactive ATO-Based Microcapsule for Solar Energy Harvesting. Science of Advanced Materials, 2013, 5, 1498-1503.	0.7	3
147	Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber. Journal of Materials Science, 2012, 47, 8052-8060.	3.7	60
148	Graphene oxide stabilized polyethylene glycol for heat storage. Physical Chemistry Chemical Physics, 2012, 14, 13233.	2.8	197
149	Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials. Solar Energy Materials and Solar Cells, 2012, 105, 21-26.	6.2	341
150	Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage. Energy, 2012, 38, 249-254.	8.8	95
151	Nanoconfinement crystallization of frustrated alkyl groups: crossover of mesophase to crystalline structure. Chemical Communications, 2011, 47, 3825.	4.1	22
152	Constitutive Relationship of New Steel 33Mn2V and Its Application in Piercing Process by FEM Simulation. Journal of Iron and Steel Research International, 2011, 18, 47-52.	2.8	5
153	Preparation and properties of poly(vinyl alcohol)-g-octadecanol copolymers based solid–solid phase change materials. Materials Chemistry and Physics, 2011, 131, 108-112.	4.0	45
154	Biodegradable poly(lactic acid) microspheres containing total alkaloids of Caulis sinomenii. Bulletin of Materials Science, 2011, 34, 1715-1719.	1.7	3
155	Preparation, characterization and permeation kinetics description of calcium alginate macro-capsules containing shape-stabilize phase change materials. Renewable Energy, 2011, 36, 2984-2991.	8.9	33
156	Structures and Properties of Wet Spun Thermo-Regulated Polyacrylonitrile-Vinylidene Chloride Fibers. Textile Reseach Journal, 2006, 76, 351-359.	2.2	75
157	Microencapsulated Phase Change Materials and its Application in Thermal-Regulated Fibers. Key Engineering Materials, 0, 519, 6-9.	0.4	2
158	New Approach to Fabricate Microcapsules with Comb-Like Copolymer Shell by Phase Separation Method. Advanced Materials Research, 0, 860-863, 577-581.	0.3	1
159	Preparation of poly(acrylonitrile-methacrylate) membrane via thermally induced phase separation: effects of MA with different feeding molar ratios. Desalination and Water Treatment, 0, , 1-17.	1.0	2
160	Photoinduced Microencapsulation of Microcapsules Containing <i>n</i> -Octadecane with P(APUA) and P(AMA) Shell. Materials Science Forum, 0, 852, 1182-1187.	0.3	1
161	Microencapsulation of energy conversion photochromic materials with epoxy resin shell by interfacial polymerization. IOP Conference Series: Materials Science and Engineering, 0, 394, 022009.	0.6	1
162	Effect of Solid-state Shear Milling Process on Mechanical Properties of PA66/graphene Nanocomposite Fibers. Fibers and Polymers, 0, , 1.	2.1	2

#	Article	IF	CITATIONS
163	High water flux poly(acrylonitrile-co-methyl acrylate) membranes fabricated via thermally induced phase separation. , 0, 120, 73-87.		2