Rajendra Prasad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3174661/publications.pdf Version: 2024-02-01

PAIENDDA PDASAD

#	Article	IF	CITATIONS
1	Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells. DNA Repair, 2021, 105, 103134.	2.8	11
2	Shining light on the response to repair intermediates in DNA of living cells. DNA Repair, 2020, 85, 102749.	2.8	9
3	RNA abasic sites in yeast and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20689-20695.	7.1	27
4	Topoisomerase I-driven repair of UV-induced damage in NER-deficient cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14412-14420.	7.1	16
5	Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts. Scientific Reports, 2020, 10, 5575.	3.3	18
6	Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair, 2020, 90, 102850.	2.8	12
7	Damage sensor role of UV-DDB during base excision repair. Nature Structural and Molecular Biology, 2019, 26, 695-703.	8.2	64
8	The Pol β variant containing exon α is deficient in DNA polymerase but has full dRP lyase activity. Scientific Reports, 2019, 9, 9928.	3.3	2
9	Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism. Annual Review of Biochemistry, 2019, 88, 137-162.	11.1	123
10	Repair pathway for PARP-1 DNA-protein crosslinks. DNA Repair, 2019, 73, 71-77.	2.8	43
11	XRCC1 phosphorylation affects aprataxin recruitment and DNA deadenylation activity. DNA Repair, 2018, 64, 26-33.	2.8	13
12	DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair, 2017, 60, 77-88.	2.8	48
13	Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. Nucleic Acids Research, 2017, 45, 10079-10088.	14.5	24
14	PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1. Nucleic Acids Research, 2017, 45, 12834-12847.	14.5	71
15	Unencumbered Pol Î ² Iyase activity in nucleosome core particles. Nucleic Acids Research, 2017, 45, 8901-8915.	14.5	20
16	Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity. Nucleic Acids Research, 2016, 44, 10824-10833.	14.5	13
17	Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair. PLoS ONE, 2015, 10, e0124269.	2.5	42
18	Complementation of aprataxin deficiency by base excision repair enzymes. Nucleic Acids Research, 2015, 43, 2271-2281.	14.5	30

Rajendra Prasad

#	Article	IF	CITATIONS
19	Base Excision Repair Defects Invoke Hypersensitivity to PARP Inhibition. Molecular Cancer Research, 2014, 12, 1128-1139.	3.4	68
20	Substrate-induced DNA Polymerase Î ² Activation. Journal of Biological Chemistry, 2014, 289, 31411-31422.	3.4	25
21	Suicidal cross-linking of PARP-1 to AP site intermediates in cells undergoing base excision repair. Nucleic Acids Research, 2014, 42, 6337-6351.	14.5	81
22	Role of polymerase β in complementing aprataxin deficiency during abasic-site base excision repair. Nature Structural and Molecular Biology, 2014, 21, 497-499.	8.2	43
23	Pol β associated complex and base excision repair factors in mouse fibroblasts. Nucleic Acids Research, 2012, 40, 11571-11582.	14.5	54
24	DNA polymerase β-dependent long patch base excision repair in living cells. DNA Repair, 2010, 9, 109-119.	2.8	45
25	Substrate Channeling in Mammalian Base Excision Repair Pathways: Passing the Baton. Journal of Biological Chemistry, 2010, 285, 40479-40488.	3.4	129
26	Coordination between Polymerase \hat{l}^2 and FEN1 Can Modulate CAG Repeat Expansion. Journal of Biological Chemistry, 2009, 284, 28352-28366.	3.4	100
27	Human DNA polymerase possesses 5'-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Research, 2009, 37, 1868-1877.	14.5	92
28	Stimulation of NEIL2-mediated Oxidized Base Excision Repair via YB-1 Interaction during Oxidative Stress. Journal of Biological Chemistry, 2007, 282, 28474-28484.	3.4	121
29	Comparative assessment of plasmid and oligonucleotide DNA substrates in measurement of in vitro base excision repair activity. Nucleic Acids Research, 2007, 35, e112-e112.	14.5	22
30	HMGB1 Is a Cofactor in Mammalian Base Excision Repair. Molecular Cell, 2007, 27, 829-841.	9.7	141
31	DNA Polymerase β and Flap Endonuclease 1 Enzymatic Specificities Sustain DNA Synthesis for Long Patch Base Excision Repair. Journal of Biological Chemistry, 2005, 280, 3665-3674.	3.4	131
32	Structural insight into the DNA polymerase β deoxyribose phosphate lyase mechanism. DNA Repair, 2005, 4, 1347-1357.	2.8	71
33	Localization of the Deoxyribose Phosphate Lyase Active Site in Human DNA Polymerase ι by Controlled Proteolysis. Journal of Biological Chemistry, 2003, 278, 29649-29654.	3.4	65
34	5'-Deoxyribose Phosphate Lyase Activity of Human DNA Polymerase &igr in Vitro. Science, 2001, 291, 2156-2159.	12.6	187
35	The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity. Nature, 2000, 405, 807-810.	27.8	316
36	FEN1 Stimulation of DNA Polymerase β Mediates an Excision Step in Mammalian Long Patch Base Excision Repair. Journal of Biological Chemistry, 2000, 275, 4460-4466.	3.4	187

#	Article	IF	CITATIONS
37	Mammalian Abasic Site Base Excision Repair. Journal of Biological Chemistry, 1998, 273, 21203-21209.	3.4	339