Rajendra Prasad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3174661/publications.pdf Version: 2024-02-01

PAIENDDA DDASAD

#	Article	IF	CITATIONS
1	Mammalian Abasic Site Base Excision Repair. Journal of Biological Chemistry, 1998, 273, 21203-21209.	3.4	339
2	The lyase activity of the DNA repair protein \hat{I}^2 -polymerase protects from DNA-damage-induced cytotoxicity. Nature, 2000, 405, 807-810.	27.8	316
3	FEN1 Stimulation of DNA Polymerase β Mediates an Excision Step in Mammalian Long Patch Base Excision Repair. Journal of Biological Chemistry, 2000, 275, 4460-4466.	3.4	187
4	5'-Deoxyribose Phosphate Lyase Activity of Human DNA Polymerase &igr in Vitro. Science, 2001, 291, 2156-2159.	12.6	187
5	HMGB1 Is a Cofactor in Mammalian Base Excision Repair. Molecular Cell, 2007, 27, 829-841.	9.7	141
6	DNA Polymerase β and Flap Endonuclease 1 Enzymatic Specificities Sustain DNA Synthesis for Long Patch Base Excision Repair. Journal of Biological Chemistry, 2005, 280, 3665-3674.	3.4	131
7	Substrate Channeling in Mammalian Base Excision Repair Pathways: Passing the Baton. Journal of Biological Chemistry, 2010, 285, 40479-40488.	3.4	129
8	Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism. Annual Review of Biochemistry, 2019, 88, 137-162.	11.1	123
9	Stimulation of NEIL2-mediated Oxidized Base Excision Repair via YB-1 Interaction during Oxidative Stress. Journal of Biological Chemistry, 2007, 282, 28474-28484.	3.4	121
10	Coordination between Polymerase β and FEN1 Can Modulate CAG Repeat Expansion. Journal of Biological Chemistry, 2009, 284, 28352-28366.	3.4	100
11	Human DNA polymerase possesses 5'-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Research, 2009, 37, 1868-1877.	14.5	92
12	Suicidal cross-linking of PARP-1 to AP site intermediates in cells undergoing base excision repair. Nucleic Acids Research, 2014, 42, 6337-6351.	14.5	81
13	Structural insight into the DNA polymerase β deoxyribose phosphate lyase mechanism. DNA Repair, 2005, 4, 1347-1357.	2.8	71
14	PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1. Nucleic Acids Research, 2017, 45, 12834-12847.	14.5	71
15	Base Excision Repair Defects Invoke Hypersensitivity to PARP Inhibition. Molecular Cancer Research, 2014, 12, 1128-1139.	3.4	68
16	Localization of the Deoxyribose Phosphate Lyase Active Site in Human DNA Polymerase Î ¹ by Controlled Proteolysis. Journal of Biological Chemistry, 2003, 278, 29649-29654.	3.4	65
17	Damage sensor role of UV-DDB during base excision repair. Nature Structural and Molecular Biology, 2019, 26, 695-703.	8.2	64
18	Pol β associated complex and base excision repair factors in mouse fibroblasts. Nucleic Acids Research, 2012, 40, 11571-11582.	14.5	54

Rajendra Prasad

#	Article	IF	CITATIONS
19	DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair, 2017, 60, 77-88.	2.8	48
20	DNA polymerase β-dependent long patch base excision repair in living cells. DNA Repair, 2010, 9, 109-119.	2.8	45
21	Role of polymerase β in complementing aprataxin deficiency during abasic-site base excision repair. Nature Structural and Molecular Biology, 2014, 21, 497-499.	8.2	43
22	Repair pathway for PARP-1 DNA-protein crosslinks. DNA Repair, 2019, 73, 71-77.	2.8	43
23	Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair. PLoS ONE, 2015, 10, e0124269.	2.5	42
24	Complementation of aprataxin deficiency by base excision repair enzymes. Nucleic Acids Research, 2015, 43, 2271-2281.	14.5	30
25	RNA abasic sites in yeast and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20689-20695.	7.1	27
26	Substrate-induced DNA Polymerase \hat{I}^2 Activation. Journal of Biological Chemistry, 2014, 289, 31411-31422.	3.4	25
27	Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. Nucleic Acids Research, 2017, 45, 10079-10088.	14.5	24
28	Comparative assessment of plasmid and oligonucleotide DNA substrates in measurement of in vitro base excision repair activity. Nucleic Acids Research, 2007, 35, e112-e112.	14.5	22
29	Unencumbered Pol β lyase activity in nucleosome core particles. Nucleic Acids Research, 2017, 45, 8901-8915.	14.5	20
30	Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts. Scientific Reports, 2020, 10, 5575.	3.3	18
31	Topoisomerase I-driven repair of UV-induced damage in NER-deficient cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14412-14420.	7.1	16
32	Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity. Nucleic Acids Research, 2016, 44, 10824-10833.	14.5	13
33	XRCC1 phosphorylation affects aprataxin recruitment and DNA deadenylation activity. DNA Repair, 2018, 64, 26-33.	2.8	13
34	Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair, 2020, 90, 102850.	2.8	12
35	Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells. DNA Repair, 2021, 105, 103134.	2.8	11
36	Shining light on the response to repair intermediates in DNA of living cells. DNA Repair, 2020, 85, 102749.	2.8	9

#	Article	IF	CITATIONS
37	The Pol β variant containing exon α is deficient in DNA polymerase but has full dRP lyase activity. Scientific Reports, 2019, 9, 9928.	3.3	2