Nowsheen Goonoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3174213/publications.pdf

Version: 2024-02-01

933447 940533 16 308 10 16 citations h-index g-index papers 16 16 16 463 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tunable biomaterials for myocardial tissue regeneration: promising new strategies for advanced biointerface control and improved therapeutic outcomes. Biomaterials Science, 2022, 10, 1626-1646.	5.4	12
2	Polysucrose hydrogel and nanofiber scaffolds for skin tissue regeneration: Architecture and cell response. Materials Science and Engineering C, 2022, , 112694.	7.3	2
3	Piezoelectric polymeric scaffold materials as biomechanical cellular stimuli to enhance tissue regeneration. Materials Today Communications, 2022, 31, 103491.	1.9	16
4	Assessing the mechanisms of action of natural molecules/extracts for phase-directed wound healing in hydrogel scaffolds. RSC Medicinal Chemistry, 2021, 12, 1476-1490.	3.9	6
5	Piezoelectric core–shell PHBV/PDX blend scaffolds for reduced superficial wound contraction and scarless tissue regeneration. Biomaterials Science, 2021, 9, 5259-5274.	5.4	21
6	Correlating <i>in vitro</i> performance with physico-chemical characteristics of nanofibrous scaffolds for skin tissue engineering using supervised machine learning algorithms. Royal Society Open Science, 2020, 7, 201293.	2.4	13
7	Repurposing nano-enabled polymeric scaffolds for tumor-wound management and 3D tumor engineering. Regenerative Medicine, 2020, 15, 2229-2247.	1.7	1
8	Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 5834-5850.	8.0	19
9	Vascularization and angiogenesis in electrospun tissue engineered constructs: towards the creation of long-term functional networks. Biomedical Physics and Engineering Express, 2018, 4, 032001.	1.2	10
10	Regenerative medicine: Induced pluripotent stem cells and their benefits on accelerated bone tissue reconstruction using scaffolds. Journal of Materials Research, 2018, 33, 1573-1591.	2.6	9
11	Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1667-1684.	3.4	64
12	Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides. Materials Science and Engineering C, 2017, 76, 13-24.	7.3	26
13	Polysucrose-based hydrogels for loading of small molecules and cell growth. Reactive and Functional Polymers, 2017, 115, 18-27.	4.1	5
14	κ-Carrageenan Enhances the Biomineralization and Osteogenic Differentiation of Electrospun Polyhydroxybutyrate and Polyhydroxybutyrate Valerate Fibers. Biomacromolecules, 2017, 18, 1563-1573.	5.4	68
15	Enhanced Differentiation of Human Preosteoblasts on Electrospun Blend Fiber Mats of Polydioxanone and Anionic Sulfated Polysaccharides. ACS Biomaterials Science and Engineering, 2017, 3, 3447-3458.	5.2	25
16	Modulating Immunological Responses of Electrospun Fibers for Tissue Engineering. Advanced Biology, 2017, 1, e1700093.	3.0	11