Megan M Mahoney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/317368/publications.pdf

Version: 2024-02-01

38 papers 1,304 citations

331670 21 h-index 35 g-index

38 all docs 38 docs citations

38 times ranked 1558 citing authors

#	Article	IF	CITATIONS
1	Preliminary findings reveal that phthalate exposure is associated with both subjective and objective measures of sleep in a small population of midlife women. Maturitas, 2022, 157, 62-65.	2.4	6
2	Modulation of circadian rhythms through estrogen receptor signaling. European Journal of Neuroscience, 2020, 51, 217-228.	2.6	44
3	Association of phthalate exposure and endogenous hormones with self-reported sleep disruptions: results from the Midlife Women's Health Study. Menopause, 2020, 27, 1251-1264.	2.0	18
4	Pharmacological challenges examining the underlying mechanism of altered response inhibition and attention due to circadian disruption in adult Long-Evans rats. Pharmacology Biochemistry and Behavior, 2020, 193, 172915.	2.9	4
5	Exposure to di-(2-ethylhexyl) phthalate transgenerationally alters anxiety-like behavior and amygdala gene expression in adult male and female mice. Physiology and Behavior, 2019, 207, 7-14.	2.1	23
6	Factors associated with poor sleep during menopause: results from the Midlife Women's Health Study. Sleep Medicine, 2018, 45, 98-105.	1.6	43
7	Circadian Rhythms—Male. , 2018, , 436-441.		1
8	Circadian disruption affects initial learning but not cognitive flexibility in an automated set-shifting task in adult Long-Evans rats. Physiology and Behavior, 2017, 179, 226-234.	2.1	5
9	Loss of Fertility in the Absence of Progesterone Receptor Expression in Kisspeptin Neurons of Female Mice. PLoS ONE, 2016, 11, e0159534.	2.5	37
10	Oestradiol Exposure Early in Life Programs Daily and Circadian Activity Rhythms in Adult Mice. Journal of Neuroendocrinology, 2016, 28, .	2.6	14
11	Changes in estrogen receptor signaling alters the timekeeping system in male mice. Behavioural Brain Research, 2015, 294, 43-49.	2.2	11
12	Estrogen receptor 1 modulates circadian rhythms in adult female mice. Chronobiology International, 2014, 31, 637-644.	2.0	30
13	ESR1 and ESR2 Differentially Regulate Daily and Circadian Activity Rhythms in Female Mice. Endocrinology, 2014, 155, 2613-2623.	2.8	43
14	Genetic polymorphisms in the aryl hydrocarbon receptor-signaling pathway and sleep disturbances in middle-aged women. Sleep Medicine, 2013, 14, 883-887.	1.6	18
15	Photic Phase-Response Curve in 2 Strains of Mice with Impaired Responsiveness to Estrogens. Journal of Biological Rhythms, 2013, 28, 291-300.	2.6	26
16	Circadian parameters are altered in two strains of mice with transgenic modifications of estrogen receptor subtype 1. Genes, Brain and Behavior, 2012, 11, 828-836.	2.2	20
17	A retrospective study of circadian and seasonal presentations of dogs with congestive heart failure: 119 cases (1997–2009). Journal of Veterinary Emergency and Critical Care, 2012, 22, 341-346.	1.1	2
18	Degu., 2012,, 1031-1053.		3

#	Article	IF	CITATIONS
19	Estradiol deficiency during development modulates the expression of circadian and daily rhythms in male and female aromatase knockout mice. Hormones and Behavior, 2011, 60, 439-447.	2.1	32
20	Characterization of the Estrous Cycle in Octodon degus. Biology of Reproduction, 2011, 84, 664-671.	2.7	30
21	Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones. Journal of Neuroscience, 2011, 31, 16107-16116.	3.6	233
22	Developmental programming: Impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicology and Applied Pharmacology, 2010, 247, 98-104.	2.8	63
23	Shift Work, Jet Lag, and Female Reproduction. International Journal of Endocrinology, 2010, 2010, 1-9.	1.5	158
24	Daily Immediate Early Gene Expression in the Suprachiasmatic Nucleus of Male and FemaleOctodon degus. Chronobiology International, 2009, 26, 821-837.	2.0	8
25	Estrogen Receptor Immunoreactivity in Late-Gestation Fetal Lambs1. Biology of Reproduction, 2009, 80, 1152-1159.	2.7	4
26	Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, <i>Arvicanthis niloticus</i> European Journal of Neuroscience, 2009, 30, 1537-1543.	2.6	33
27	Gonadal hormone effects on entrained and free-running circadian activity rhythms in the developing diurnal rodent Octodon degus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R586-R597.	1.8	42
28	Tyrosine hydroxylase positive neurons and their contacts with vasoactive intestinal polypeptide-containing fibers in the hypothalamus of the diurnal murid rodent, Arvicanthis niloticus. Journal of Chemical Neuroanatomy, 2007, 33, 131-139.	2.1	11
29	Odor-specific effects on reentrainment following phase advances in the diurnal rodent, Octodon degus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1808-R1816.	1.8	14
30	Arginine vasopressin and vasoactive intestinal polypeptide fibers make appositions with gonadotropin-releasing hormone and estrogen receptor cells in the diurnal rodent Arvicanthis niloticus. Brain Research, 2005, 1049, 156-164.	2.2	19
31	A daily rhythm in mating behavior in a diurnal murid rodent Arvicanthis niloticus. Hormones and Behavior, 2005, 47, 8-13.	2.1	22
32	Circadian Regulation of Gonadotropin-Releasing Hormone Neurons and the Preovulatory Surge in Luteinizing Hormone in the Diurnal Rodent, Arvicanthis niloticus, and in a Nocturnal Rodent, Rattus norvegicus1. Biology of Reproduction, 2004, 70, 1049-1054.	2.7	44
33	Pubertal Development of Sex Differences in Circadian Function: An Animal Model. Annals of the New York Academy of Sciences, 2004, 1021, 262-275.	3.8	37
34	Effects of photoperiod on the reproductive condition of Nile grass rats (Arvicanthis niloticus) from an equatorial population. African Journal of Ecology, 2002, 40, 295-302.	0.9	8
35	Phase Response Curve and Light-Induced Fos Expression in the Suprachiasmatic Nucleus and Adjacent Hypothalamus of Arvicanthis niloticus. Journal of Biological Rhythms, 2001, 16, 149-162.	2.6	66
36	Calbindin and Fos within the suprachiasmatic nucleus and the adjacent hypothalamus of Arvicanthis niloticus and Rattus norvegicus. Neuroscience, 2000, 99, 565-575.	2.3	31

ı	#	Article	IF	CITATIONS
	37	Fos Expression within Vasopressin-Containing Neurons in the Suprachiasmatic Nucleus of Diurnal Rodents Compared to Nocturnal Rodents. Journal of Biological Rhythms, 1999, 14, 37-46.	2.6	28
	38	Molecular analysis of the sheep cathelin family reveals a novel antimicrobial peptide. FEBS Letters, 1995, 377, 519-522.	2.8	73