David Carl Erickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3173385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A diagnostic platform for rapid, simultaneous quantification of procalcitonin and C-reactive protein in human serum. EBioMedicine, 2022, 76, 103867.	2.7	12
2	Simplified detection of Epstein-Barr virus for diagnosis of endemic Burkitt lymphoma. Blood Advances, 2022, 6, 3650-3654.	2.5	3
3	Gold Nanoshells-Based Lateral Flow Assay for the Detection of Chagas Disease at the Point-of-Care. American Journal of Tropical Medicine and Hygiene, 2022, 107, 323-327.	0.6	2
4	Multiplexed paper-based assay for personalized antimicrobial susceptibility profiling of Carbapenem-resistant Enterobacterales performed in a rechargeable coffee mug. Scientific Reports, 2022, 12, .	1.6	1
5	Paper-Based Semi-quantitative Antimicrobial Susceptibility Testing. ACS Omega, 2021, 6, 1410-1414.	1.6	6
6	Point-of-Care Quantification of Serum Alpha-Fetoprotein for Screening Birth Defects in Resource-Limited Settings: Proof-of-Concept Study. JMIR Biomedical Engineering, 2021, 6, e23527.	0.7	1
7	Vitamin A status, inflammation adjustment, and immunologic response in the context of acute febrile illness: A pilot cohort study among pediatric patients. Clinical Nutrition, 2021, 40, 2837-2844.	2.3	5
8	Visible colorimetric growth indicators of Neisseria gonorrhoeae for low-cost diagnostic applications. PLoS ONE, 2021, 16, e0252961.	1.1	3
9	Early Warning Diagnostics for Emerging Infectious Diseases in Developing into Late-Stage Pandemics. Accounts of Chemical Research, 2021, 54, 3656-3666.	7.6	15
10	Two-Color Duplex Platform for Point-of-Care Differential Detection of Malaria and Typhoid Fever. Analytical Chemistry, 2021, 93, 12175-12180.	3.2	9
11	An isothermal amplification-based point-of-care diagnostic platform for the detection of Mycobacterium tuberculosis: A proof-of-concept study. Current Research in Biotechnology, 2021, 3, 154-159.	1.9	3
12	Engineering waveguide surface by gradient etching for uniform light scattering in photocatalytic applications. Chemical Engineering Journal Advances, 2021, 8, 100192.	2.4	3
13	Highly portable quantitative screening test for prostate-specific antigen at point of care. Current Research in Biotechnology, 2021, 3, 288-299.	1.9	12
14	A Rapid, Isothermal, and Point-of-Care System for COVID-19 Diagnostics. Journal of Biomolecular Techniques, 2021, 32, 221-227.	0.8	6
15	Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. Journal of Biomolecular Techniques, 2021, 32, 228-275.	0.8	28
16	HI-Light: A Glass-Waveguide-Based "Shell-and-Tube―Photothermal Reactor Platform for Converting CO2 to Fuels. IScience, 2020, 23, 101856.	1.9	18
17	Evaluation of Unmanned Aerial Vehicles and Neural Networks for Integrated Mosquito Management of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 2020, 57, 1588-1595.	0.9	17
18	Current state of the art in rapid diagnostics for antimicrobial resistance. Lab on A Chip, 2020, 20, 26, 2607-2625.	3.1	37

#	Article	IF	CITATIONS
19	An energy-flexible mechanism for qPCR thermal cycling using shape memory alloys. Smart Materials and Structures, 2020, 29, 045038.	1.8	0
20	cAST: Capillary-Based Platform for Real-Time Phenotypic Antimicrobial Susceptibility Testing. Analytical Chemistry, 2020, 92, 2731-2738.	3.2	10
21	A point-of-care assay for alpha-1-acid glycoprotein as a diagnostic tool for rapid, mobile-based determination of inflammation. Current Research in Biotechnology, 2019, 1, 41-48.	1.9	25
22	Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nature Communications, 2019, 10, 4185.	5.8	92
23	A two-colour multiplexed lateral flow immunoassay system to differentially detect human malaria species on a single test line. Malaria Journal, 2019, 18, 313.	0.8	25
24	Fluorescence lateral flow competitive protein binding assay for the assessment of serum folate concentrations. PLoS ONE, 2019, 14, e0217403.	1.1	4
25	Rapid Diagnostic Platform for Colorimetric Differential Detection of Dengue and Chikungunya Viral Infections. Analytical Chemistry, 2019, 91, 5415-5423.	3.2	33
26	Rapid diagnostics for point-of-care quantification of soluble transferrin receptor. EBioMedicine, 2019, 42, 504-510.	2.7	14
27	Point of care technologies for sepsis diagnosis and treatment. Lab on A Chip, 2019, 19, 728-737.	3.1	47
28	A multistage elastocaloric refrigerator and heat pump with 28 K temperature span. Scientific Reports, 2019, 9, 18532.	1.6	66
29	ironPhone: Mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin. Biosensors and Bioelectronics, 2018, 99, 115-121.	5.3	54
30	High-yield paper-based quantitative blood separation system. Lab on A Chip, 2018, 18, 3865-3871.	3.1	33
31	H.E.R.M.E.S: rapid blood-plasma separation at the point-of-need. Lab on A Chip, 2018, 18, 3285-3292.	3.1	23
32	A portable device for nucleic acid quantification powered by sunlight, a flame or electricity. Nature Biomedical Engineering, 2018, 2, 657-665.	11.6	54
33	Holographic diagnosis of lymphoma. Nature Biomedical Engineering, 2018, 2, 631-632.	11.6	3
34	Personalized stress monitoring: a smartphone-enabled system for quantification of salivary cortisol. Personal and Ubiquitous Computing, 2018, 22, 867-877.	1.9	16
35	TIDBIT: portable diagnostics of multiplexed nutrition deficiencies: iron, vitamin A and inflammation status (Conference Presentation). , 2017, , .		1
36	Rainer Gross Award Lecture 2016. Food and Nutrition Bulletin, 2017, 38, 140-145.	0.5	1

#	Article	IF	CITATIONS
37	Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics. Analytical Chemistry, 2017, 89, 5095-5100.	3.2	73
38	Precision nutrition — review of methods for point-of-care assessment of nutritional status. Current Opinion in Biotechnology, 2017, 44, 103-108.	3.3	23
39	Orthogonal Nanoparticle Size, Polydispersity, and Stability Characterization with Near-Field Optical Trapping and Light Scattering. ACS Photonics, 2017, 4, 106-113.	3.2	9
40	Roadmap for optofluidics. Journal of Optics (United Kingdom), 2017, 19, 093003.	1.0	78
41	Rapid diagnostic testing platform for iron and vitamin A deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13513-13518.	3.3	45
42	Enhancing the Usability of an Optical Reader System to Support Point-of-Care Rapid Diagnostic Testing: An Iterative Design Approach. JMIR Human Factors, 2017, 4, e29.	1.0	7
43	Measurement of nanoparticle size, suspension polydispersity, and stability using near-field optical trapping and light scattering (Conference Presentation). , 2017, , .		0
44	KS-Detect – Validation of Solar Thermal PCR for the Diagnosis of Kaposi's Sarcoma Using Pseudo-Biopsy Samples. PLoS ONE, 2016, 11, e0147636.	1.1	28
45	Solar-thermal complex sample processing for nucleic acid based diagnostics in limited resource settings. Biomedical Optics Express, 2016, 7, 1974.	1.5	8
46	Optofluidic nanotweezer methods for characterizing nanoparticles and viruses (Conference) Tj ETQq0 0 0 rgBT /	Overlock :	10 Tf 50 382
47	NutriPhone: vitamin B12 testing on your smartphone (Conference Presentation). , 2016, , .		0
48	StressPhone: smartphone based platform for measurement of cortisol for stress detection (Conference Presentation). , 2016, , .		0
49	Two-Color Lateral Flow Assay for Multiplex Detection of Causative Agents Behind Acute Febrile Illnesses. Analytical Chemistry, 2016, 88, 8359-8363.	3.2	78
50	Dynamics of an optically confined nanoparticle diffusing normal to a surface. Physical Review E, 2016, 93, 062139.	0.8	2
51	Simultaneous Characterization of Nanoparticle Size and Particle-Surface Interactions with Three-Dimensional Nanophotonic Force Microscopy. Physical Review Applied, 2016, 6, .	1.5	16
52	NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations. Scientific Reports, 2016, 6, 28237.	1.6	61
53	Personalized nutrition diagnostics at the point-of-need. Lab on A Chip, 2016, 16, 2408-2417.	3.1	22

#	Article	IF	CITATIONS
55	High-throughput Characterization of Nanoparticle Stability Using Near-field Optical Trapping. , 2016, , .		0
56	Nanophotonic detection of freely interacting molecules on a single influenza virus. Scientific Reports, 2015, 5, 12087.	1.6	37
57	Lab-on-a-Bird: Biophysical Monitoring of Flying Birds. PLoS ONE, 2015, 10, e0123947.	1.1	13
58	Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning. Optics Express, 2015, 23, A1664.	1.7	3
59	Localized Opto-Mechanical Control of Protein Adsorption onto Carbon Nanotubes. Scientific Reports, 2015, 4, 6707.	1.6	1
60	Near-Field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces. Journal of Lightwave Technology, 2015, 33, 3494-3502.	2.7	10
61	Nanophotonic Force Microscopy: Characterizing Particle–Surface Interactions Using Near-Field Photonics. Nano Letters, 2015, 15, 1414-1420.	4.5	29
62	Integrated hollow fiber membranes for gas delivery into optical waveguide based photobioreactors. Bioresource Technology, 2015, 192, 845-849.	4.8	13
63	Optimal Intensity and Biomass Density for Biofuel Production in a Thin-Light-Path Photobioreactor. Environmental Science & Technology, 2015, 49, 6327-6334.	4.6	20
64	Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Scientific Reports, 2015, 4, 4137.	1.6	92
65	Mobile Technologies for Personalized Diagnostics and Global Health. , 2015, , .		0
66	Autonomous Device for Application in Late-Phase Hemorrhagic Shock Prevention. PLoS ONE, 2014, 9, e89903.	1.1	0
67	Uniform algal growth in photobioreactors using surface scatterers. , 2014, , .		0
68	Optomechanical manipulation of chemical reactions on the nanoscale with optofluidic nanotweezers. Proceedings of SPIE, 2014, , .	0.8	1
69	Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation. Optics Express, 2014, 22, A1526.	1.7	20
70	Self-assembled photonic-plasmonic nanotweezers for directed self-assembly of hybrid nanostructures. Applied Physics Letters, 2014, 104, 043112.	1.5	10
71	A micropillar array for sample concentration via in-plane evaporation. Biomicrofluidics, 2014, 8, 044108.	1.2	14
72	A smartphone platform for the quantification of vitamin D levels. Lab on A Chip, 2014, 14, 1437-1442.	3.1	169

#	Article	IF	CITATIONS
73	Mechanical decision trees for investigating and modulating single-cell cancer invasion dynamics. Lab on A Chip, 2014, 14, 964.	3.1	21
74	Cholesterol testing on a smartphone. Lab on A Chip, 2014, 14, 759-763.	3.1	211
75	Stacked optical waveguide photobioreactor for high density algal cultures. Bioresource Technology, 2014, 171, 495-499.	4.8	36
76	In Situ UV Disinfection of a Waveguide-Based Photobioreactor. Environmental Science & Technology, 2014, 48, 11521-11526.	4.6	3
77	Detection of Kaposi's sarcoma associated herpesvirus nucleic acids using a smartphone accessory. Lab on A Chip, 2014, 14, 3809-3816.	3.1	43
78	Hollow fibre membrane arrays for CO ₂ delivery in microalgae photobioreactors. RSC Advances, 2014, 4, 1460-1468.	1.7	8
79	Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab on A Chip, 2014, 14, 3159-3164.	3.1	162
80	Optofluidics for Mobile Health, Bioenergy, and Nanoparticle Analysis. , 2014, , .		0
81	Electroosmotic Flow (DC). , 2014, , 1-11.		0
82	Optofluidics: Fluidics Enabling Optics. , 2014, , 1-8.		0
83	SNP on Chip Micro- and Nanofluidics for Single-Nucleotide Polymorphism Discrimination. , 2014, , 1-8.		0
84	Optofluidics: Techniques for Fabrication and Integration. , 2014, , 1-9.		0
85	Multiplexed colorimetric detection of Kaposi's sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale, 2013, 5, 1678.	2.8	83
86	A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies. Integrative Biology (United Kingdom), 2013, 5, 1374-1384.	0.6	62
87	In situ hollow fiber membrane facilitated CO2 delivery to a cyanobacterium for enhanced productivity. RSC Advances, 2013, 3, 13203.	1.7	9
88	Near-Field Angular Orientation of Biological Materials. Biophysical Journal, 2013, 104, 676a.	0.2	0
89	Near-Field Optical Immobilization of Antibodies for Novel Fluorescent Bioassays. Biophysical Journal, 2013, 104, 501a.	0.2	0
90	Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors. Nanoscale, 2013, 5, 3976.	2.8	21

#	Article	IF	CITATIONS
91	Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. Analytica Chimica Acta, 2013, 759, 74-80.	2.6	38
92	Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab on A Chip, 2013, 13, 3232.	3.1	327
93	Redox mediated photocatalytic water-splitting in optofluidic microreactors. Lab on A Chip, 2013, 13, 409-414.	3.1	53
94	Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab on A Chip, 2013, 13, 340-348.	3.1	89
95	Lightâ€Governed Capillary Flow in Microfluidic Systems. Small, 2013, 9, 107-114.	5.2	14
96	High volumetric power density, non-enzymatic, glucose fuel cells. Scientific Reports, 2013, 3, 1226.	1.6	66
97	The molecular nanotweezer: nanomanipulation taken to new lows. , 2013, , .		1
98	Hollow Fiber Membrane (HFM) Facilitated CO2 Delivery to a Cyanobacteria Layer for Biofuel Production. , 2013, , .		0
99	Solar-thermally driven PCR for power-free diagnostics. , 2013, , .		0
100	Smartphone Based Optical Detection of Kaposiâ \in Ms Sarcoma Associated Herpesvirus DNA. , 2013, , .		0
101	Smartphone Based Optical Detection of Kaposiâ \in ™s Sarcoma Associated Herpesvirus DNA. , 2013, , .		0
102	Gel-based optical waveguides with live cell encapsulation and integrated microfluidics. Optics Letters, 2012, 37, 1472.	1.7	76
103	DNA Transport and Delivery in Thermal Gradients near Optofluidic Resonators. Physical Review Letters, 2012, 108, 048102.	2.9	42
104	Nanoporous polymer ring resonators for biosensing. Optics Express, 2012, 20, 245.	1.7	30
105	Microfluidic Photocatalytic Water-Splitting Reactors. , 2012, , .		1
106	Flexible Photonics Based Optofluidic Photobioreactors. , 2012, , .		0
107	Overcoming the Temperature Increase Hurdle in Photonic Crystal Molecular Tweezers. , 2012, , .		0
108	Agarose gel optical waveguides with encapsulation of live cells and integrated microfluidics. , 2012, , .		1

#	Article	IF	CITATIONS
109	Novel Approach in Algae Biofuel Production using Advanced Photonics. , 2012, , .		Ο
110	Angular Orientation of Nanorods Using Nanophotonic Tweezers. Nano Letters, 2012, 12, 6400-6407.	4.5	30
111	Optofluidic opportunities in global health, food, water and energy. Nanoscale, 2012, 4, 4839.	2.8	65
112	Implantable microfluidic and electronic systems for insect flight manipulation. Microfluidics and Nanofluidics, 2012, 13, 345-352.	1.0	18
113	Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids. Lab on A Chip, 2012, 12, 2575.	3.1	6
114	Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field. Physical Chemistry Chemical Physics, 2012, 14, 4817.	1.3	21
115	Slab waveguide photobioreactors for microalgae based biofuel production. Lab on A Chip, 2012, 12, 3740.	3.1	35
116	Optically induced microfluidic reconfiguration. Lab on A Chip, 2012, 12, 613-621.	3.1	17
117	Controlled Photonic Manipulation of Proteins and Other Nanomaterials. Nano Letters, 2012, 12, 1633-1637.	4.5	176
118	Ultra-sensitive, label-free probing of the conformational characteristics of amyloid beta aggregates with a SERS active nanofluidic device. Microfluidics and Nanofluidics, 2012, 12, 663-669.	1.0	51
119	Size-selective concentration and label-free characterization of protein aggregates using a Raman active nanofluidic device. Lab on A Chip, 2011, 11, 632-638.	3.1	49
120	Hydrodynamic optical alignment for microflow cytometry. Lab on A Chip, 2011, 11, 1138.	3.1	34
121	Large area flexible SERS active substrates using engineered nanostructures. Nanoscale, 2011, 3, 2903.	2.8	91
122	Directed Self-Assembly of Microcomponents Enabled by Laser-Activated Bubble Latching. Langmuir, 2011, 27, 11259-11264.	1.6	13
123	High Resolution Reversible Color Images on Photonic Crystal Substrates. Langmuir, 2011, 27, 9676-9680.	1.6	67
124	Nanomanipulation using near field photonics. Lab on A Chip, 2011, 11, 995.	3.1	231
125	Optofluidic waveguides for reconfigurable photonic systems. Optics Express, 2011, 19, 8602.	1.7	190
126	Optofluidics for energy applications. Nature Photonics, 2011, 5, 583-590.	15.6	266

#	Article	IF	CITATIONS
127	Microfabricated Physical Spatial Gradients for Investigating Cell Migration and Invasion Dynamics. PLoS ONE, 2011, 6, e20825.	1.1	71
128	Waveguide Enabled Photo-Bio-Energy Production. , 2011, , .		0
129	Optofluidically reconfigurable channel based microfluidics. , 2011, , .		0
130	A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. Journal of Power Sources, 2011, 196, 9169-9175.	4.0	55
131	A plate-frame flow-through microfluidic fuel cell stack. Journal of Power Sources, 2011, 196, 9481-9487.	4.0	51
132	A novel polymer microneedle fabrication process for active fluidic delivery. Microfluidics and Nanofluidics, 2011, 10, 785-791.	1.0	13
133	Creating optically reconfigurable channel based microfluidic systems. , 2011, , .		1
134	Nanomanipulation using silicon nitride photonic crystal resonators. , 2011, , .		0
135	A Microfabricated Enzyme-Free Glucose Fuel Cell for Implantable Devices. , 2011, , .		0
136	Nanomanipulation Using Near Field Photonics. , 2011, , .		1
137	Directed Assembly of Microstructures Using Bubble Latches. , 2011, , .		0
138	Porous Polymer Waveguides and Ring Resonators. , 2011, , .		0
139	Single-Molecule Biophysics with Optofluidic Trapping. , 2011, , .		0
140	Hydrodynamically driven docking of blocks for 3D fluidic assembly. Microfluidics and Nanofluidics, 2010, 9, 551-558.	1.0	12
141	Biopatterning for label-free detection. Colloids and Surfaces B: Biointerfaces, 2010, 76, 375-380.	2.5	12
142	Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays. Biosensors and Bioelectronics, 2010, 25, 1240-1243.	5.3	54
143	Rapid Prototyping of Nanofluidic Systems Using Sizeâ€Reduced Electrospun Nanofibers for Biomolecular Analysis. Small, 2010, 6, 2420-2426.	5.2	14
144	Optofluidic ring resonator switch for optical particle transport. Lab on A Chip, 2010, 10, 769.	3.1	257

#	Article	IF	CITATIONS
145	Analysis of liquid-to-solid coupling and other performance parameters for microfluidically reconfigurable photonic systems. Optics Express, 2010, 18, 10973.	1.7	8
146	Stochastic Modular Robotic Systems: A Study of Fluidic Assembly Strategies. IEEE Transactions on Robotics, 2010, 26, 518-530.	7.3	36
147	Multiplex Single Nucleotide Polymorphism Genotyping Utilizing Ligase Detection Reaction Coupled Surface Enhanced Raman Spectroscopy. Analytical Chemistry, 2010, 82, 5810-5814.	3.2	51
148	Nanomanipulation Using Silicon Photonic Crystal Resonators. Nano Letters, 2010, 10, 99-104.	4.5	265
149	Optofluidics. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 529-551.	0.5	1
150	Microfluidically Reconfigurable Photonics and Matter. , 2010, , .		0
151	Design and Experimental Demonstration of Optical Resonators for Nanotweezing. , 2010, , .		0
152	Vivo-Fluidics and Programmable Matter. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 553-576.	0.5	0
153	Surface Enhanced Raman Scattering (SERS) on-an-optofluidic chip using roof collapse method. , 2010, , ·		0
154	Introduction to Microfluidic and Optofluidic Transport. , 2010, , 1-1-1-22.		0
155	A method for nanofluidic device prototyping using elastomeric collapse. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15549-15554.	3.3	141
156	Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and Nanofluidics, 2009, 6, 285-297.	1.0	186
157	A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release. Biomedical Microdevices, 2009, 11, 861-867.	1.4	58
158	Bioconjugation techniques for microfluidic biosensors. Analytical and Bioanalytical Chemistry, 2009, 394, 469-479.	1.9	55
159	Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature, 2009, 457, 71-75.	13.7	744
160	Forces and Transport Velocities for a Particle in a Slot Waveguide. Nano Letters, 2009, 9, 1182-1188.	4.5	109
161	Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab on A Chip, 2009, 9, 433-439.	3.1	103
162	Optothermorheological flow manipulation. Optics Letters, 2009, 34, 1976.	1.7	33

#	Article	IF	CITATIONS
163	Electroactive micro and nanowells for optofluidic storage. Optics Express, 2009, 17, 21134.	1.7	4
164	A multiplexed optofluidic biomolecular sensor for low mass detection. Lab on A Chip, 2009, 9, 2924.	3.1	143
165	Surface-Enhanced Raman Scattering Based Ligase Detection Reaction. Journal of the American Chemical Society, 2009, 131, 2208-2213.	6.6	83
166	Optically Resonant Nanophotonic Devices for Label-Free Biomolecular Detection. Integrated Analytical Systems, 2009, , 445-470.	0.4	3
167	Engineering insect flight metabolics using immature stage implanted microfluidics. Lab on A Chip, 2009, 9, 669-676.	3.1	20
168	Hydrodynamically Tunable Affinities for Fluidic Assembly. Langmuir, 2009, 25, 3769-3774.	1.6	19
169	Direct Manipulation of Nanoparticles and DNA in Sub-Wavelength Optical Nanochannels. , 2009, , .		Ο
170	Optical Manipulation using Silicon Nanophotonics (Invited). , 2009, , .		0
171	Opto-Thermorheologically Reconfigurable Microfluidics. , 2009, , .		0
172	Highly Multiplexed Antibody-Antigen Detection using Nanoscale Optofluidic Resonators. , 2009, , .		0
173	Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluidics and Nanofluidics, 2008, 4, 33-52.	1.0	219
174	Special issue on "Optofluidics― Microfluidics and Nanofluidics, 2008, 4, 1-2.	1.0	15
175	Surface Plasmon Resonance Sensors. , 2008, , 1939-1945.		Ο
176	Nanoscale optofluidic sensor arrays. Optics Express, 2008, 16, 1623.	1.7	275
177	Nanoscale Optofluidic Sensor Arrays for Dengue virus detection. , 2008, , .		Ο
178	Spectrographic fluidic memory using electroactive nanowell arrays. , 2008, , .		0
179	Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab on A Chip, 2008, 8, 330-338.	3.1	85
180	Stability analysis of optofluidic transport on solid-core waveguiding structures. Nanotechnology, 2008, 19, 045704.	1.3	61

#	Article	IF	CITATIONS
181	Increased robustness for fluidic self-assembly. Physics of Fluids, 2008, 20, .	1.6	10
182	Dynamically programmable fluidic assembly. Applied Physics Letters, 2008, 93, .	1.5	48
183	Optofluidic Trapping and Transport Using Optically Resonant and Non Resonant Structures. , 2008, , .		0
184	Optofluidics: Fluidics Enabling Optics and Optics Enabling Fluidics. , 2008, , .		0
185	Optical trapping platform based on highly confining silicon waveguiding structures with microfluidics. , 2008, , .		0
186	Optofluidic Transport: Optical Waveguides as Microfluidic "Train Tracks― , 2007, , 815.		1
187	Trapping and storage of particles in electroactive microwells. Applied Physics Letters, 2007, 90, 024102.	1.5	19
188	Optofluidic transport in liquid core waveguiding structures. Applied Physics Letters, 2007, 90, 184103.	1.5	50
189	Nanoscale optofluidic sensor arrays for Dengue virus detection. Proceedings of SPIE, 2007, , .	0.8	7
190	Nanofluidic tuning of photonic crystal circuits. , 2007, , .		1
191	Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Optics Express, 2007, 15, 14322.	1.7	242
192	Optofluidic Transport in Liquid Core Photonic Crystal Fibers. , 2007, , .		0
193	Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip. Lab on A Chip, 2006, 6, 1274-1276.	3.1	272
194	Nanofluidic tuning of photonic crystal circuits. Optics Letters, 2006, 31, 59.	1.7	235
195	Micro and Nanofluidic Transport Using Advanced Photonic Devices. , 2006, , 117.		0
196	Optofluidically driven micro- and nano-fluidic devices. , 2006, 6329, 80.		0
197	Electro-active nanowell structures for sensing and optofluidic applications. , 2006, , .		0
198	Nano-aperture array based optical imaging system on a microfluidic chip. , 2006, , .		0

#	Article	IF	CITATIONS
199	Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluidics and Nanofluidics, 2005, 1, 301-318.	1.0	149
200	Optofluidics. , 2005, 5908, 231.		5
201	Electrokinetically Based Approach for Single-Nucleotide Polymorphism Discrimination Using a Microfluidic Device. Analytical Chemistry, 2005, 77, 4000-4007.	3.2	79
202	A DNA Hybridization Chip With Electrokinetically-Based Single Nucleotide Polymorphism (SNP) Discrimination. , 2004, , 271.		0
203	Integrated microfluidic devices. Analytica Chimica Acta, 2004, 507, 11-26.	2.6	635
204	Cationic polymer coatings for design of electroosmotic flow and control of DNA adsorption. Analytica Chimica Acta, 2004, 507, 55-62.	2.6	27
205	Development of a novel microfluidic immunoassay for the detection of Helicobacter pylori infection. Analyst, The, 2004, 129, 823.	1.7	37
206	Electrokinetically Controlled DNA Hybridization Microfluidic Chip Enabling Rapid Target Analysis. Analytical Chemistry, 2004, 76, 7269-7277.	3.2	101
207	A miniaturized high-voltage integrated power supply for portable microfluidic applications. Lab on A Chip, 2004, 4, 87.	3.1	45
208	Ionic Strength-Dependent pKShift in the Helixâ^'Coil Transition of Grafted Poly(l-glutamic acid) Layers Analyzed by Electrokinetic and Ellipsometric Measurements. Langmuir, 2004, 20, 2369-2374.	1.6	20
209	Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows. Analytical Chemistry, 2004, 76, 3208-3213.	3.2	252
210	Modeling of DNA hybridization kinetics for spatially resolved biochips. Analytical Biochemistry, 2003, 317, 186-200.	1.1	150
211	Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. Journal of Colloid and Interface Science, 2003, 261, 402-410.	5.0	626
212	Three-Dimensional Structure of Electroosmotic Flow over Heterogeneous Surfaces. Journal of Physical Chemistry B, 2003, 107, 12212-12220.	1.2	48
213	Analysis of Alternating Current Electroosmotic Flows in a Rectangular Microchannel. Langmuir, 2003, 19, 5421-5430.	1.6	95
214	Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab on A Chip, 2003, 3, 141.	3.1	261
215	Photo-injection based sample design and electroosmotic transport in microchannels. Journal of Micromechanics and Microengineering, 2002, 12, 898-904.	1.5	17
216	Microchannel Flow with Patchwise and Periodic Surface Heterogeneity. Langmuir, 2002, 18, 8949-8959.	1.6	71

#	Article	IF	CITATIONS
217	Electrophoretic Motion of a Circular Cylindrical Particle in a Circular Cylindrical Microchannel. Langmuir, 2002, 18, 9095-9101.	1.6	58
218	Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing. Langmuir, 2002, 18, 1883-1892.	1.6	273
219	An experimental investigation into the dimension-sensitive viscosity of polymer containing lubricant oils in microchannels. Experimental Thermal and Fluid Science, 2002, 25, 623-630.	1.5	11
220	Numerical simulations of a low power microchannel thermal cycling reactor. International Journal of Heat and Mass Transfer, 2002, 45, 3759-3770.	2.5	25
221	An energy balance approach to modeling the hydrodynamically driven spreading of a liquid drop. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 182, 109-122.	2.3	25
222	Streaming Potential and Streaming Current Methods for Characterizing Heterogeneous Solid Surfaces. Journal of Colloid and Interface Science, 2001, 237, 283-289.	5.0	62
223	An Improved Method of Determining the ζ-Potential and Surface Conductance. Journal of Colloid and Interface Science, 2000, 232, 186-197.	5.0	86