List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3172109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating Extracellular Vesicles Contain Liver-Derived RNA Species as Indicators of Severe Cholestasis-Induced Early Liver Fibrosis in Mice. Antioxidants and Redox Signaling, 2022, 36, 480-504.	5.4	9
2	Hemopexin and Cancer. International Journal of Molecular Sciences, 2022, 23, 997.	4.1	4
3	Divergent roles of haptoglobin and hemopexin deficiency for disease progression of Shiga-toxin–induced hemolytic-uremic syndrome in mice. Kidney International, 2022, 101, 1171-1185.	5.2	10
4	Inhibition of Heme Export and/or Heme Synthesis Potentiates Metformin Anti-Proliferative Effect on Cancer Cell Lines. Cancers, 2022, 14, 1230.	3.7	5
5	Liver Sinusoidal Endothelial Cells at the Crossroad of Iron Overload and Liver Fibrosis. Antioxidants and Redox Signaling, 2021, 35, 474-486.	5.4	6
6	Regenerative Approaches and Future Trends for the Treatment of Corneal Burn Injuries. Journal of Clinical Medicine, 2021, 10, 317.	2.4	10
7	HEME: a neglected player in nociception?. Neuroscience and Biobehavioral Reviews, 2021, 124, 124-136.	6.1	8
8	The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation. Cell Reports, 2021, 35, 109252.	6.4	29
9	The RNA-Binding Protein ESRP1 Modulates the Expression of RAC1b in Colorectal Cancer Cells. Cancers, 2021, 13, 4092.	3.7	6
10	Endothelial Heme Dynamics Drive Cancer Cell Metabolism by Shaping the Tumor Microenvironment. Biomedicines, 2021, 9, 1557.	3.2	5
11	Endothelial Cells Promote Osteogenesis by Establishing a Functional and Metabolic Coupling With Human Mesenchymal Stem Cells. Frontiers in Physiology, 2021, 12, 813547.	2.8	3
12	Scavenging of Labile Heme by Hemopexin Is a Key Checkpoint in Cancer Growth and Metastases. Cell Reports, 2020, 32, 108181.	6.4	27
13	Hereditary Ataxia: A Focus on Heme Metabolism and Fe-S Cluster Biogenesis. International Journal of Molecular Sciences, 2020, 21, 3760.	4.1	14
14	Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells, 2020, 9, 386.	4.1	18
15	Human liver stem cells express UGT1A1 and improve phenotype of immunocompromised Crigler Najjar syndrome type I mice. Scientific Reports, 2020, 10, 887.	3.3	11
16	Proteomics-Based Evidence for a Pro-Oncogenic Role of ESRP1 in Human Colorectal Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 575.	4.1	12
17	Expression and purification of the heme exporter FLVCR1a. Protein Expression and Purification, 2020, 172, 105637.	1.3	1
18	The Crosstalk Between Osteodifferentiating Stem Cells and Endothelial Cells Promotes Angiogenesis and Bone Formation. Frontiers in Physiology, 2019, 10, 1291.	2.8	36

#	Article	lF	CITATIONS
19	Purinergic Calcium Signals in Tumor-Derived Endothelium. Cancers, 2019, 11, 766.	3.7	20
20	Investigating the Connection Between Endogenous Heme Accumulation and COX2 Activity in Cancer Cells. Frontiers in Oncology, 2019, 9, 162.	2.8	11
21	Temporal and age-dependent effects of haptoglobin deletion on intracerebral hemorrhage-induced brain damage and neurobehavioral outcomes. Experimental Neurology, 2019, 317, 22-33.	4.1	11
22	Heme and sensory neuropathy: insights from novel mutations in the heme exporter feline leukemia virus subgroup C receptor 1. Pain, 2019, 160, 2766-2775.	4.2	16
23	Fyn kinase is a novel modulator of erythropoietin signaling and stress erythropoiesis. American Journal of Hematology, 2019, 94, 10-20.	4.1	28
24	The Multifaceted Role of Heme in Cancer. Frontiers in Oncology, 2019, 9, 1540.	2.8	80
25	Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death and Differentiation, 2018, 25, 573-588.	11.2	78
26	Characterization of Human Mesenchymal Stem Cells Isolated from the Testis. Stem Cells International, 2018, 2018, 1-9.	2.5	14
27	Targeting Metabolism to Counteract Tumor Angiogenesis: A Review of Patent Literature. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 422-427.	1.6	11
28	Mitochondrial Targeting in Neurodegeneration: A Heme Perspective. Pharmaceuticals, 2018, 11, 87.	3.8	26
29	Unraveling the Role of Heme in Neurodegeneration. Frontiers in Neuroscience, 2018, 12, 712.	2.8	42
30	Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight, 2018, 3, .	5.0	135
31	IL-22 controls iron-dependent nutritional immunity against systemic bacterial infections. Science Immunology, 2017, 2, .	11.9	50
32	Hemopexin counteracts systolic dysfunction induced by heme-driven oxidative stress. Free Radical Biology and Medicine, 2017, 108, 452-464.	2.9	38
33	Data demonstrating the anti-oxidant role of hemopexin in the heart. Data in Brief, 2017, 13, 69-76.	1.0	13
34	Posterior column ataxia with retinitis pigmentosa coexisting with sensoryâ€autonomic neuropathy and leukemia due to the homozygous p.Pro221Ser <i>FLVCR1</i> mutation. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 732-739.	1.7	21
35	Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency. Stem Cell Research and Therapy, 2017, 8, 176.	5.5	33
36	The RNA-binding protein ESRP1 promotes human colorectal cancer progression. Oncotarget, 2017, 8, 10007-10024.	1.8	57

#	Article	IF	CITATIONS
37	Age-Dependent Effects of Haptoglobin Deletion in Neurobehavioral and Anatomical Outcomes Following Traumatic Brain Injury. Frontiers in Molecular Biosciences, 2016, 3, 34.	3.5	9
38	Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception. PLoS Genetics, 2016, 12, e1006461.	3.5	43
39	Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood, 2016, 127, 473-486.	1.4	213
40	Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. Journal of Neuroinflammation, 2016, 13, 26.	7.2	51
41	The heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation. Haematologica, 2015, 100, 720-729.	3.5	54
42	Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0136762.	2.5	7
43	Crucial Role of FLVCR1a in the Maintenance of Intestinal Heme Homeostasis. Antioxidants and Redox Signaling, 2015, 23, 1410-1423.	5.4	33
44	Increasing serum transferrin to reduce tissue iron overload due to ineffective erythropoiesis. Haematologica, 2015, 100, 565-566.	3.5	8
45	The Heme Scavenger Hemopexin Reverts Heme-Driven Pro-Inflammatory Phenotypic Switching of Macrophages in Sickle Cell Disease. Blood, 2015, 126, 2205-2205.	1.4	0
46	Haptoglobin, hemopexin, and related defense pathwaysââ,¬â€basic science, clinical perspectives, and drug development. Frontiers in Physiology, 2014, 5, 415.	2.8	204
47	Heme and erythropoieis: more than a structural role. Haematologica, 2014, 99, 973-983.	3.5	139
48	Heme Exporter FLVCR1a Regulates Heme Synthesis and DegradationÂand Controls Activity of Cytochromes P450. Gastroenterology, 2014, 146, 1325-1338.	1.3	59
49	Alumina–zirconia composites functionalized with laminin-1 and laminin-5 for dentistry: Effect of protein adsorption on cellular response. Colloids and Surfaces B: Biointerfaces, 2014, 114, 284-293.	5.0	22
50	Hypoxia controls Flvcr1 gene expression in Caco2 cells through HIF2α and ETS1. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 259-264.	1.9	15
51	Renal Cells from Spermatogonial Germline Stem Cells Protect against Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 316-328.	6.1	27
52	Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Frontiers in Pharmacology, 2014, 5, 61.	3.5	305
53	Hemopexin Therapy Improves Cardiovascular Function by Preventing Heme-Induced Endothelial Toxicity in Mouse Models of Hemolytic Diseases. Circulation, 2013, 127, 1317-1329.	1.6	197
54	Cell-specific regulation of Ferroportin transcription following experimentally-induced acute anemia in mice. Blood Cells, Molecules, and Diseases, 2013, 50, 25-30.	1.4	21

#	Article	IF	CITATIONS
55	Acute-Phase Protein Hemopexin Is a Negative Regulator of Th17 Response and Experimental Autoimmune Encephalomyelitis Development. Journal of Immunology, 2013, 191, 5451-5459.	0.8	28
56	Therapeutic Approaches to Limit Hemolysis-Driven Endothelial Dysfunction: Scavenging Free Heme to Preserve Vasculature Homeostasis. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	4.0	38
57	Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake. PLoS ONE, 2013, 8, e68146.	2.5	11
58	The RNA Binding Protein ESRP1 Fine-Tunes the Expression of Pluripotency-Related Factors in Mouse Embryonic Stem Cells. PLoS ONE, 2013, 8, e72300.	2.5	39
59	Assessment of iron absorption in mice by ICP-MS measurements of 57Fe levels. European Journal of Nutrition, 2012, 51, 783-789.	3.9	19
60	The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. Journal of Clinical Investigation, 2012, 122, 4569-4579.	8.2	153
61	A Role for Hemopexin in Oligodendrocyte Differentiation and Myelin Formation. PLoS ONE, 2011, 6, e20173.	2.5	28
62	Inhibition of Neutrophil Migration by Hemopexin Leads to Increased Mortality Due to Sepsis in Mice. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 922-931.	5.6	40
63	Generation of Functional Hepatocytes From Mouse Germ Line Cell-Derived Pluripotent Stem Cells In Vitro. Stem Cells and Development, 2010, 19, 1183-1194.	2.1	21
64	Diamond Blackfan Anemia at the Crossroad between Ribosome Biogenesis and Heme Metabolism. Advances in Hematology, 2010, 2010, 1-8.	1.0	22
65	Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter. Haematologica, 2010, 95, 1261-1268.	3.5	228
66	Heme Scavenging and the Other Facets of Hemopexin. Antioxidants and Redox Signaling, 2010, 12, 305-320.	5.4	220
67	Heme–Hemopexin Complex Attenuates Neuronal Cell Death and Stroke Damage. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 953-964.	4.3	81
68	Haemopexin affects iron distribution and ferritin expression in mouse brain. Journal of Cellular and Molecular Medicine, 2009, 13, 4192-4204.	3.6	44
69	Hemopexin Prevents Endothelial Damage and Liver Congestion in a Mouse Model of Heme Overload. American Journal of Pathology, 2008, 173, 289-299.	3.8	113
70	Lack of Plasma Protein Hemopexin Dampens Mercury-Induced Autoimmune Response in Mice. Journal of Immunology, 2008, 181, 1937-1947.	0.8	15
71	Lack of Haptoglobin Affects Iron Transport Across Duodenum by Modulating Ferroportin Expression. Gastroenterology, 2007, 133, 1261-1271.e3.	1.3	31
72	Microarray and Large-ScaleIn Silico–Based Identification of Genes Functionally Related to Haptoglobin and/or Hemopexin. DNA and Cell Biology, 2006, 25, 323-330.	1.9	9

#	Article	IF	CITATIONS
73	Haptoglobin modifies the hemochromatosis phenotype in mice. Blood, 2005, 105, 3353-3355.	1.4	36
74	Hemoglobin and heme scavenging. IUBMB Life, 2005, 57, 749-759.	3.4	227
75	Plasma Protein Haptoglobin Modulates Renal Iron Loading. American Journal of Pathology, 2005, 166, 973-983.	3.8	96
76	Enhanced splenomegaly and severe liver inflammation in haptoglobin/hemopexin double-null mice after acute hemolysis. Blood, 2002, 100, 4201-4208.	1.4	122
77	Hemopexin: Structure, Function, and Regulation. DNA and Cell Biology, 2002, 21, 297-306.	1.9	368
78	Analysis of the murine phosphoinositide 3-kinase \hat{I}^3 gene. Gene, 2000, 256, 69-81.	2.2	16
79	Defective Recovery and Severe Renal Damage After Acute Hemolysis in Hemopexin-Deficient Mice. Blood, 1999, 94, 3906-3914.	1.4	141
80	Defective Recovery and Severe Renal Damage After Acute Hemolysis in Hemopexin-Deficient Mice. Blood, 1999, 94, 3906-3914.	1.4	4
81	The murine Y1receptor 5′ upstream sequence directs cell-specific and developmentally regulatedLacZexpression in transgenic mice CNS. European Journal of Neuroscience, 1998, 10, 3257-3268.	2.6	18
82	Green fluorescent protein as a reporter of gene expression in transgenic mice. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1352, 193-202.	2.4	40
83	Specific Expression in Brain and Liver Driven by the Hemopexin Promoter in Transgenic Mice. Biochemical and Biophysical Research Communications, 1996, 218, 694-703.	2.1	42
84	Ciliary Neurotrophic Factor Constitutively Expressed in the Nervous System of Transgenic Mice Protects Embryonic Dorsal Root Ganglion Neurons from Apoptosis. European Journal of Neuroscience, 1996, 8, 521-529.	2.6	12
85	Analysis of regulatory regions of the ciliary neurotrophic factor gene in transgenic mice. NeuroReport, 1995, 7, 57-60.	1.2	3
86	Analysis of regulatory regions of the ciliary neurotrophic factor gene in transgenic mice. NeuroReport, 1995, 7, 57-60.	1.2	2
87	In vitro study of olfactory receptor neurones expressing the dipeptide carnosine. NeuroReport, 1994, 5, 569-572.	1.2	8
88	Role of extracellular matrix molecules in the development of the sodium current in quail mesencephalic neural crest cells. Experientia, 1992, 48, 859-864.	1.2	2
89	Cloning and expression of human ciliary neurotrophic factor. FEBS Journal, 1991, 201, 289-294.	0.2	21
90	Haptoglobin and Hemopexin in Heme Detoxification and Iron Recycling. , 0, , .		7

Haptoglobin and Hemopexin in Heme Detoxification and Iron Recycling. , 0, , . 90

6