
Tatiana A Prikhna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3171554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Oxygen Concentration and Distribution on Microstructure and Superconducting Characteristics of MgB ₂ -Based Materials and Melt-Textured YBCO. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6.	1.7	1
2	Phase Formation and Physicomechanical Properties of WC–Co–CrB2 Composites Sintered by Vacuum Hot Pressing for Drill Tools. Journal of Superhard Materials, 2022, 44, 1-11.	1.2	1
3	Sintered nanocomposites ZrO2-WC obtained with field assisted hot pressing. Composite Structures, 2021, 259, 113443.	5.8	12
4	Influence of heating to high temperatures on mechanical properties of boride-based refractory materials. Technology Audit and Production Reserves, 2021, 2, 21-25.	0.2	0
5	ĐŸÑ€Đ¾ Ñ€Đ¾Đ·Đ²Đ _, Ñ,Đ¾Đº Đ¼Ñ–Đ¶Đ½Đ°Ñ€Đ¾ĐƊ½Đ¾Đ3Đ¾ ÑĐ¿Ñ–Đ²Ñ€Đ¾Đ±Ñ–Ñ,Đ½Đ,цÑ,Đ²Đ)° Ð?ÐÐÐ	∙УÐ⁰раÑ-
6	Critical Current Density, Pinning and Nanostructure of MT-YBCO and MgB ₂ -based Materials. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	3
7	Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering. Journal of the European Ceramic Society, 2021, 41, 4755-4760.	5.7	23
8	A novel route to superhard nanocrystalline cubic boron nitride: Emulsion detonation and high-pressure high-temperature transformation-assisted consolidation. Journal of the European Ceramic Society, 2021, 41, 5505-5511.	5.7	3
9	Graphene-layer-coated boron carbide nanosheets with efficient electromagnetic wave absorption. Applied Surface Science, 2021, 560, 150027.	6.1	17
10	Morphology characteristics and mechanical properties of hot-pressed micron/sub-micron boron carbide ceramics. Materials Today Communications, 2021, 29, 102751.	1.9	2
11	A study of wastewater purification from Zn2 + ions by nanosorbent, obtained by electroerosion dispersion. Problems of Water Supply Sewerage and Hydraulic, 2021, , 56-61.	0.1	0
12	Structure and Properties of WC–Co Composites with Different CrB2 Concentrations, Sintered by Vacuum Hot Pressing, for Drill Bits. Journal of Superhard Materials, 2021, 43, 344-354.	1.2	10
13	Correlations between the structure and superconducting properties of MT-YBaCuO. Journal of Physics: Conference Series, 2020, 1559, 012048.	0.4	3
14	Creep and Viscoelasticity of the Ti3AlC2 MAX Phase at Room Temperature. Journal of Superhard Materials, 2020, 42, 294-301.	1.2	1
15	MgB2 Wires and Bulks With High Superconducting Performance. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	3
16	Manufacturing, Structure, Properties of MgB2-Based Materials. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3115-3120.	1.8	1
17	Lightweight ceramics based on aluminum dodecaboride, boron carbide and self-bonded silicon carbide. Ceramics International, 2019, 45, 9580-9588.	4.8	15
18	Correlations Between Superconducting Characteristics and Structure of MgB2-Based Materials, <italic>ab</italic> -Initio Modeling. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.7	1

ΤΑΤΙΑΝΑ Α ΡΓΙΚΗΝΑ

#	Article	IF	CITATIONS
19	Electroerosion dispersion, sorption and coagulation for complex water purification: Electroerosion waste recycling and manufacturing of metal, oxide and alloy nanopowders. Nanotechnology Perceptions, 2019, 15, 48-57.	0.2	4
20	Structure and Properties of MgB2: Effect of Ti-O and TiC Additions. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	4
21	Iron oxide nanopowder synthesized by electroerosion dispersion (EED) – Properties and potential for microwave applications. Current Applied Physics, 2018, 18, 1410-1414.	2.4	6
22	Synthesis Peculiarities of CNT "Forest―Under Conditions of Adding a Regulated Plasma Component of the Working Gas. Journal of Superhard Materials, 2018, 40, 267-273.	1.2	4
23	Investigation of Properties of Nanostructured MgB2 Films Deposited by Magnetron Sputtering. , 2018, , \cdot		0
24	Charge and heat transfer of the Ti3AlC2 MAX phase. Journal of Materials Science: Materials in Electronics, 2018, 29, 11478-11481.	2.2	11
25	Effect of the Additive of Y2O3 on the Structure Formation and Properties of Composite Materials Based on AlN–SiC. Journal of Superhard Materials, 2018, 40, 8-15.	1.2	19
26	Preparation and Properties of MgB ₂ Thin Films. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-7.	1.7	1
27	Presence of Oxygen in Ti-Al-C MAX Phases-Based Materials and their Stability in Oxidizing Environment at Elevated Temperatures. Acta Physica Polonica A, 2018, 133, 789-793.	0.5	13
28	Thermal and crack resistance of ceramics based on the MAX phase Ti ₃ AlC ₂ . Functional Materials, 2018, 25, 708-712.	0.1	4
29	Research of the treatment of depleted nickelÂplating electrolytes by the ferritization method. Eastern-European Journal of Enterprise Technologies, 2018, 3, 52-60.	0.5	28
30	Structure and Transport Characteristics of Tunnel Junctions with Hybrid Semiconductor Barriers with Quantum Dots. Acta Physica Polonica A, 2018, 133, 1060-1064.	0.5	0
31	MgB ₂ -based superconductors for fault current limiters. IOP Conference Series: Materials Science and Engineering, 2017, 171, 012144.	0.6	2
32	Structure and Properties of MgB2Bulks, Thin Films, and Wires. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	10
33	Charge Transport in Hybrid Tunnel Superconductor—Quantum Dot—Superconductor Junctions. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-7.	1.7	16
34	Structure and properties of superhard materials based on aluminum dodecaboride α-AlB12. Journal of Superhard Materials, 2017, 39, 299-307.	1.2	9
35	Structure and properties of hot-pressed materials based on AlB12C2. Journal of Superhard Materials, 2017, 39, 216-219.	1.2	4
36	Pinning in high performance MgB 2 thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities. Physica C: Superconductivity and Its Applications, 2017, 533, 36-39.	1.2	11

#	Article	IF	CITATIONS
37	Structure and thermal expansion of (Crx,V1â^'x)n+1AlCn phases measured by X-ray diffraction. Journal of the European Ceramic Society, 2017, 37, 15-21.	5.7	22
38	Structure and superconducting characteristics of magnesium diboride, substitution of boron atoms by oxygen and carbon. IOP Conference Series: Materials Science and Engineering, 2017, 279, 012023.	0.6	1
39	Physical mechanism of resistive switchings in nanoscale contacts based on complex transition-metal oxides. , 2017, , .		0
40	Improved design josephson junctions with hybrid nanostructured barriers. , 2017, , .		1
41	Study of MAX Phase-Based Compacts Obtained by Shock-Wave Loading Method. Springer Proceedings in Physics, 2017, , 327-333.	0.2	0
42	Pinning and trapped field in MgB2- and MT-YBaCuO bulk superconductors manufactured under pressure. Journal of Physics: Conference Series, 2016, 695, 012001.	0.4	1
43	Structure and Properties of Bulk MgB ₂ . Asian Journal of Social Science Studies, 2016, , 131-157.	0.1	10
44	Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600°C in Air. Nanoscale Research Letters, 2016, 11, 358.	5.7	17
45	Formation of nanostructure in magnesium diboride based materials with high superconducting characteristics. Low Temperature Physics, 2016, 42, 380-394.	0.6	16
46	Processing of Bulk MgB ₂ Superconductors for Application in Fault Current Limiters. Materials Science Forum, 2016, 856, 32-37.	0.3	0
47	The effect of size of the SiC inclusions in the AlN–SiC composite structure on its electrophysical properties. Journal of Superhard Materials, 2016, 38, 241-250.	1.2	8
48	Josephson Junctions with the Increased Value of a Characteristic Voltage. Metallofizika I Noveishie Tekhnologii, 2016, 38, 319-328.	0.5	0
49	Formation regularities of structures of AlN-SiC-based ceramic materials. Journal of Superhard Materials, 2015, 37, 293-299.	1.2	2
50	Effect of Nanostructural Inhomogeneities on the Superconducting Characteristics of <inline-formula> <tex-math notation="TeX">\$hbox{MgB}_{2}\$</tex-math></inline-formula> With Enhanced Grain Connectivity. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	7
51	Influence of Technological Media on the Mechanical and Physical Properties of Materials for Fuel Cells. Materials Science, 2015, 51, 149-157.	0.9	2
52	Structure and properties of oxygen-containing thin films and bulk MgB2. IOP Conference Series: Materials Science and Engineering, 2015, 102, 012030.	0.6	0
53	Influence of Nanostructural Inhomogeneities on Superconducting Characteristics of MgB2. Journal of Superconductivity and Novel Magnetism, 2015, 28, 525-530.	1.8	5
54	Polishing of optoelectronic components made of monocrystalline silicon carbide. Journal of Superhard Materials, 2015, 37, 48-56.	1.2	18

#	Article	IF	CITATIONS
55	Mechanical characteristics and high temperature stability of oxidized Ti <inf>3</inf> AlC <inf>2</inf> nanolaminat. , 2014, , .		Ο
56	Nanostructural inhomogeneities acting as pinning centers in bulk MgB ₂ with low and enhanced grain connectivity. Superconductor Science and Technology, 2014, 27, 044013.	3.5	38
57	Temperature–pressure induced nano-structural inhomogenities for vortex pinning in bulk MgB2 of different connectivity. Physica C: Superconductivity and Its Applications, 2014, 503, 109-112.	1.2	9
58	Effect of the deposition technological parameters on the transparences distribution functions of Josephson junction barriers. Journal of Superhard Materials, 2014, 36, 180-186.	1.2	0
59	Studies of the oxidation stability, mechanical characteristics of materials based on max phases of the Ti-Al-(C, N) systems, and of the possibility of their use as tool bonds and materials for polishing. Journal of Superhard Materials, 2014, 36, 9-17.	1.2	18
60	Pinning in \$hbox{MgB}_{2}\$- and YBaCuO-Based Superconductors: Effect of Manufacturing Pressure and Temperature. IEEE Transactions on Applied Superconductivity, 2013, 23, 8001605-8001605.	1.7	7
61	Synthesis Pressure–Temperature Effect on Pinning in MgB2-Based Superconductors. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1569-1576.	1.8	25
62	Influence of Oxygen and Boron Distribution on the Superconducting Characteristics of Nanostructural Mg-B-O Ceramics. Solid State Phenomena, 2013, 200, 137-143.	0.3	5
63	AC losses in high pressure synthesized MgB ₂ bulk rings measured by a transformer method. Superconductor Science and Technology, 2013, 26, 035015.	3.5	8
64	Measuring AC Losses and Critical Current of High Pressure Synthesized MgB ₂ Bulk Rings by the Transformer Method. Materials Science Forum, 2012, 721, 27-32.	0.3	0
65	Influence of oxygen and boron distribution on superconducting characteristics of nanostructural Mg-B-O ceramics. , 2012, , .		Ο
66	Universal Character of Tunnel Conductivity of Metalinsulator-Metal Heterostructures with Nanosized Oxide Barriers. Physics Procedia, 2012, 36, 94-99.	1.2	19
67	Processing and oxygenation of YBaCuO melted textured ceramics at high and enhanced pressures and temperatures. Journal of Superhard Materials, 2012, 34, 283-298.	1.2	2
68	Superconductivity in Multi-Phase Mg-B-O Compounds. Physics Procedia, 2012, 36, 475-478.	1.2	4
69	The effect of high-pressure synthesis on flux pinning in MgB2-based superconductors. Physica C: Superconductivity and Its Applications, 2012, 479, 111-114.	1.2	21
70	Mechanical properties of materials based on MAX phases of the Ti-Al-C system. Journal of Superhard Materials, 2012, 34, 102-109.	1.2	23
71	High-Pressure Synthesized Nanostructural \${hbox {MgB}}_{2}\$ Materials With High Performance of Superconductivity, Suitable for Fault Current Limitation and Other Applications. IEEE Transactions on Applied Superconductivity, 2011, 21, 2694-2697.	1.7	6
72	Synthesis of ternary compounds of the Ti-Al-C system at high pressures and temperatures. Journal of Superhard Materials, 2011, 33, 307-314.	1.2	8

5

#	Article	IF	CITATIONS
73	Effects of High Pressure on the Physical Properties of MgB2. Journal of Superconductivity and Novel Magnetism, 2011, 24, 137-150.	1.8	8
74	Effect of higher borides and inhomogeneity of oxygen distribution on critical current density of undoped and doped magnesium diboride. Journal of Physics: Conference Series, 2010, 234, 012031.	0.4	14
75	Higher borides and oxygen-enriched Mg–B–O inclusions as possible pinning centers in nanostructural magnesium diboride and the influence of additives on their formation. Physica C: Superconductivity and Its Applications, 2010, 470, 935-938.	1.2	22
76	The Effect of Oxygen Distribution Inhomogeneity and Presence of Higher Borides on the Critical Current Density Improvement of Nanostructural MgB ₂ . Advances in Science and Technology, 2010, 75, 161-166.	0.2	1
77	Critical current density investigations of explosively compacted and extruded powder-in-tube MgB2superconductors. Superconductor Science and Technology, 2010, 23, 095011.	3.5	8
78	Nanostructural Superconducting Materials for Fault Current Limiters and Cryogenic Electrical Machines. Acta Physica Polonica A, 2010, 117, 7-14.	0.5	16
79	Flux mapping at 77K and local measurement at lower temperature of thin-wall YBaCuO single-domain samples oxygenated under high pressure. Physica C: Superconductivity and Its Applications, 2009, 469, 1200-1206.	1.2	22
80	The effect of strain on structural transformations in materials of the AlN-TiN systems when loaded in diamond anvils. Journal of Superhard Materials, 2009, 31, 281-283.	1.2	2
81	Explosively Consolidated Powder-In-Tube MgB\$_{2}\$ Superconductor Aided by Post-Thermal Treatment. IEEE Transactions on Applied Superconductivity, 2009, 19, 20-27.	1.7	19
82	Phase diagram of the Mg–B system at 2ÂGPa and peculiarities of high-pressure manufacture of MgB ₂ -based blocks with high critical currents. High Pressure Research, 2009, 29, 87-92.	1.2	5
83	Formation of Higher Borides During High-Pressure Synthesis and Sintering of Magnesium Diboride and Their Positive Effect on Pinning and Critical Current Density. IEEE Transactions on Applied Superconductivity, 2009, 19, 2780-2783.	1.7	15
84	Improved magnetic trapped field in thin-wall YBCO single-domain samples by high-pressure oxygen annealing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 53-59.	3.5	7
85	Improvement of superconductive and mechanical properties of bulk and thin-wall MT-YBCO ceramics in oxygenation. Journal of Superhard Materials, 2008, 30, 215-232.	1.2	5
86	Study of the effect of the injection molding parameters on physico-mechanical properties of aluminum nitride-based ceramics. Journal of Superhard Materials, 2008, 30, 255-260.	1.2	1
87	HIGH-PRESSURE OXYGENATION OF MT-YBCO: THE WAY TO REDUCE THE OXYGENATION TIME, TO PREVENT MACROCRACKING, AND TO OBTAIN MATERIALS WITH HIGH CRITICAL CURRENTS AIP Conference Proceedings, 2008, , .	0.4	Ο
88	Peculiarities of high-pressure and hot-pressing manufacture of MgB2-based blocks with high critical currents for electrical machines. Journal of Physics: Conference Series, 2008, 97, 012022.	0.4	9
89	High-pressure oxygenation of thin-wall YBCO single-domain samples. Journal of Physics: Conference Series, 2008, 97, 012043.	0.4	9
90	Oxygenation of bulk and thin-walled MT-YBCO under controllable oxygen pressure. Journal of Physics: Conference Series, 2008, 97, 012023.	0.4	3

#	Article	IF	CITATIONS
91	Electroerosion dispersion-prepared nano- and submicrometre-sized aluminium and alumina powders as power-accumulating substances. Nanotechnology Perceptions, 2008, 4, 179-187.	0.2	5
92	The inclusions of Mg–B (MgB ₁₂ ?) as potential pinning centres in high-pressure–high-temperature-synthesized or sintered magnesium diboride. Superconductor Science and Technology, 2007, 20, S257-S263.	3.5	35
93	Peculiarities of High-Pressure Oxygenation of MT-YBCO. IEEE Transactions on Applied Superconductivity, 2007, 17, 2992-2995.	1.7	3
94	Oxygenation of the traditional and thin-walled MT-YBCO in flowing oxygen and under high evaluated oxygen pressure. Physica C: Superconductivity and Its Applications, 2007, 460-462, 392-394.	1.2	9
95	High-pressure–high-temperature synthesis of magnesium diboride with different additions. Physica C: Superconductivity and Its Applications, 2007, 460-462, 595-597.	1.2	6
96	High-pressure synthesized nanostructural magnesium diboride-based materials for superconductive electromotors, generators and pumps. Journal of Materials Processing Technology, 2007, 181, 71-75.	6.3	5
97	An experimental investigation of a reluctance electrical drive with bulk superconducting elements in the rotor at temperature below 20 K. Journal of Physics: Conference Series, 2006, 43, 792-795.	0.4	12
98	Formation of magnesium diboride-based materials with high critical currents and mechanical characteristics by highpressure synthesis. Journal of Physics: Conference Series, 2006, 43, 496-499.	0.4	7
99	Ti and Zr doped MgB2bulk superconductors. Journal of Physics: Conference Series, 2006, 43, 500-504.	0.4	24
100	Modern superconductive materials for electrical machines and devices working on the principle of levitation. Low Temperature Physics, 2006, 32, 505-517.	0.6	8
101	High-Pressure High-Temperature Synthesis of Nanostructural Magnesium Diboride for Electromotors and Devices Working at Liquid Hydrogen Temperatures. Advances in Science and Technology, 2006, 47, 25.	0.2	6
102	Formation of superconducting junctions in MT-YBCO. Superconductor Science and Technology, 2005, 18, S153-S157.	3.5	6
103	Dislocation configurations in twin-free melt-textured YBa2Cu3O7processed at high pressure and temperature. Philosophical Magazine Letters, 2005, 85, 405-414.	1.2	3
104	Chemical interactions in Ti doped MgB2superconducting bulk samples and wires. Superconductor Science and Technology, 2005, 18, 1190-1196.	3.5	27
105	High-Pressure Synthesis of MgB2-Based Material with High Critical Currents. , 2005, , 81-90.		6
106	Batch-processed melt-textured YBCO with improved quality for motor and bearing applications. Superconductor Science and Technology, 2004, 17, 1185-1188.	3.5	41
107	Structure and properties of melt-textured YBa2Cu3O7ÂÂ, high pressure–high temperature treated and oxygenated under evaluated oxygen pressure. Superconductor Science and Technology, 2004, 17, S515-S519.	3.5	17
108	High-pressure synthesis of MgB2 with addition of Ti. Physica C: Superconductivity and Its Applications, 2004, 402, 223-233.	1.2	46

#	Article	IF	CITATIONS
109	Joining of melt-textured YBCO using Tm123 powder as a solder. Physica C: Superconductivity and Its Applications, 2003, 386, 221-224.	1.2	9
110	High-pressure synthesis of a bulk superconductive MgB2-based material. Physica C: Superconductivity and Its Applications, 2003, 386, 565-568.	1.2	30
111	Superconducting joining of MT-YBCO. Physica C: Superconductivity and Its Applications, 2003, 392-396, 432-436.	1.2	3
112	High pressure synthesis and sintering of MgB/sub 2/. IEEE Transactions on Applied Superconductivity, 2003, 13, 3506-3509.	1.7	4
113	Temperature dependence of the trapped magnetic field in MgB2 bulk superconductors. Applied Physics Letters, 2003, 83, 4360-4362.	3.3	37
114	Superconducting joining of melt-textured YBCO. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1528-1530.	1.2	11
115	High-pressure synthesis of MgB2 with and without tantalum additions. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1543-1545.	1.2	17
116	Superconducting joining of melt-textured Y–Ba–Cu–O bulk material. Physica C: Superconductivity and Its Applications, 2001, 354, 333-337.	1.2	24
117	High-pressure–high-temperature-induced variations in Y123-structural type superconductors. Physica C: Superconductivity and Its Applications, 2001, 354, 415-419.	1.2	5
118	Simple technique for quality estimation of superconducting joints in bulk melt-processed high temperature superconductors. Superconductor Science and Technology, 2001, 14, L41-L43.	3.5	6
119	Properties of AlN–TiN composite ceramics. Advances in Applied Ceramics, 2000, 99, 278-279.	0.4	7
120	Thermobaric effect on melt-textured MBa2Cu3O7â^δ (M=Y, Nd). Physica B: Condensed Matter, 2000, 284-288, 2097-2098.	2.7	0
121	Title is missing!. Journal of Materials Science, 2000, 35, 1607-1613.	3.7	11
122	High-pressure-high-temperature effect on the structure of YBaCuO- and NdBaCuO-based superconductive ceramics. Superconductor Science and Technology, 1998, 11, 1123-1128.	3.5	4
123	High pressure/high temperature treatment of melt textured YBCO high temperature superconductors. European Physical Journal D, 1996, 46, 1405-1406.	0.4	Ο
124	Structural variations in high-temperature superconductive YBa2Cu3O7â^î^ ceramic samples under high pressure-high temperature conditions. Journal of Materials Science, 1995, 30, 3662-3667.	3.7	20
125	High pressure-high temperature effect on the HTSC ceramics structure and properties. Journal of Electronic Materials, 1995, 24, 1971-1975.	2.2	4
126	Influence of high pressures and temperatures on the behaviour of Bismuth-based superconductors. Journal of the European Ceramic Society, 1994, 14, 221-225.	5.7	1

#	Article	IF	CITATIONS
127	Aluminium borides and carboborides. AIP Conference Proceedings, 1991, , .	0.4	6
128	Structure and properties of superstoichiometric YBa 2 Cu 3 O 7+x compounds. Physica C: Superconductivity and Its Applications, 1989, 162-164, 941-942.	1.2	1
129	Properties of high-temperature solution-grown aluminium borides. Journal of the Less Common Metals, 1986, 117, 349-353.	0.8	17
130	High Pressure Synthesized Magnesium Diboride- and Dodecaboride-Based Superconductors: Structure and Properties. Materials Science Forum, 0, 670, 21-27.	0.3	2
131	Spark Plasma Synthesis and Sintering of Superconducting MgB ₂ -Based Materials. Materials Science Forum, 0, 721, 3-8.	0.3	9
132	Role of Mg-B-O Nanostructural Inhomogenities on the Performance of Superconducting MgB ₂ . Advances in Science and Technology, 0, , .	0.2	0
133	Structure and Functional Properties of Bulk MgB ₂ Superconductors Synthesized and Sintered under Pressure. Materials Science Forum, 0, 792, 21-26.	0.3	7
134	Study of the Thermal Stability and Mechanical Characteristics of MAX Phases of Ti-Al-C(N) System and their Solid Solutions. Advances in Science and Technology, 0, , .	0.2	8
135	Thermal Stability and Mechanical Characteristics of Densified Ti ₃ AlC ₂ -Based Material. Solid State Phenomena, 0, 230, 140-143.	0.3	11
136	Structure and Properties of Magnesium Diboride and the Effect of Additions. Materials Science Forum, 0, 915, 65-70.	0.3	2
137	Structure and properties of MgB ₂ bulks: <i>ab-initio</i> simulations compared to experiment. IOP Conference Series: Materials Science and Engineering, 0, 756, 012020.	0.6	2
138	Parameters of the Unit Cell of the Ti ₃ AlC ₂ MAXâ€Phase with the Hydrogen. Physica Status Solidi (B): Basic Research, 0, , .	1.5	1