Mark Christian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3169408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food phenolics stimulate adipocyte browning via regulating gut microecology. Critical Reviews in Food Science and Nutrition, 2023, 63, 4026-4052.	10.3	4
2	Alkaloids from lotus (<i>Nelumbo nucifera</i>): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 4867-4900.	10.3	12
3	Metabolic responses of light and taste receptors – unexpected actions of GPCRs in adipocytes. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 111-120.	5.7	3
4	Dynamic enlargement and mobilization of lipid droplets in pluripotent cells coordinate morphogenesis during mouse peri-implantation development. Nature Communications, 2022, 13, .	12.8	11
5	Androgen Reduces Mitochondrial Respiration in Mouse Brown Adipocytes: A Model for Disordered Energy Balance in Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 2021, 22, 243.	4.1	12
6	Elucidation of the roles of brown and brite fat genes: GPR120 is a modulator of brown adipose tissue function. Experimental Physiology, 2020, 105, 1201-1205.	2.0	9
7	Crosstalk Between Mast Cells and Adipocytes in Physiologic and Pathologic Conditions. Clinical Reviews in Allergy and Immunology, 2020, 58, 388-400.	6.5	34
8	Dietary polyphenols turn fat "brown― A narrative review of the possible mechanisms. Trends in Food Science and Technology, 2020, 97, 221-232.	15.1	27
9	Smad4 promotes diabetic nephropathy by modulating glycolysis and <scp>OXPHOS</scp> . EMBO Reports, 2020, 21, e48781.	4.5	39
10	Inflammatory Signaling and Brown Fat Activity. Frontiers in Endocrinology, 2020, 11, 156.	3.5	58
11	The <scp>GPR</scp> 120 agonist <scp>TUG</scp> â€891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Molecular Medicine, 2018, 10, .	6.9	91
12	Hydroxysteroid dehydrogenase family proteins on lipid droplets through bacteria, C. elegans, and mammals. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 881-894.	2.4	25
13	Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Molecular Metabolism, 2018, 18, 97-106.	6.5	22
14	In Vitro Models for Study of Brown Adipocyte Biology. Handbook of Experimental Pharmacology, 2018, 251, 85-96.	1.8	1
15	Neuronatin regulates pancreatic \hat{l}^2 cell insulin content and secretion. Journal of Clinical Investigation, 2018, 128, 3369-3381.	8.2	47
16	Lipid droplet growth: regulation of a dynamic organelle. Current Opinion in Cell Biology, 2017, 47, 9-15.	5.4	60
17	Diacylglycerol acyltransferase 2 links glucose utilization to fatty acid oxidation in the brown adipocytes. Journal of Lipid Research, 2017, 58, 15-30.	4.2	51
18	Hormonal factors in the control of the browning of white adipose tissue. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.7	12

MARK CHRISTIAN

#	Article	IF	CITATIONS
19	Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome. PLoS Genetics, 2016, 12, e1005916.	3.5	27
20	The nuclear cofactor receptor interacting protein-140 (RIP140) regulates the expression of genes involved in AÎ ² generation. Neurobiology of Aging, 2016, 47, 180-191.	3.1	9
21	Insulin-like growth factor axis in pregnancies affected by fetal growth disorders. Clinical Epigenetics, 2016, 8, 11.	4.1	62
22	The K ⁺ channel TASK1 modulates βâ€adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway. FASEB Journal, 2016, 30, 909-922.	0.5	33
23	Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 918-928.	4.1	113
24	Transcriptional fingerprinting of "browning―white fat identifies NRG4 as a novel adipokine. Adipocyte, 2015, 4, 50-54.	2.8	43
25	Activation of the Wnt/βâ€catenin pathway represses the transcription of the βâ€amyloid precursor protein cleaving enzyme (BACE1) via binding of Tâ€cell factorâ€4 to BACE1 promoter. FASEB Journal, 2015, 29, 623-635.	0.5	82
26	The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. ELife, 2015, 4, e07485.	6.0	118
27	Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential. Journal of Lipid Research, 2014, 55, 2479-2490.	4.2	23
28	Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E945-E964.	3.5	296
29	RIP140 Represses the "Brown-in-White―Adipocyte Program Including a Futile Cycle of Triacyclglycerol Breakdown and Synthesis. Molecular Endocrinology, 2014, 28, 344-356.	3.7	44
30	Uterine Selection of Human Embryos at Implantation. Scientific Reports, 2014, 4, 3894.	3.3	232
31	Induction of 11β-HSD 1 and Activation of Distinct Mineralocorticoid Receptor- and Glucocorticoid Receptor-Dependent Gene Networks in Decidualizing Human Endometrial Stromal Cells. Molecular Endocrinology, 2013, 27, 192-202.	3.7	74
32	Distinct functions for RIP140 in development, inflammation, and metabolism. Trends in Endocrinology and Metabolism, 2013, 24, 451-459.	7.1	73
33	Dynamic changes in lipid droplet-associated proteins in the "browning―of white adipose tissues. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 924-933.	2.4	100
34	Induction of microRNA resistance and secretion in differentiating human endometrial stromal cells. Journal of Molecular Cell Biology, 2013, 5, 67-70.	3.3	17
35	Nuclear receptor-mediated regulation of lipid droplet-associated protein gene expression in adipose tissue. Hormone Molecular Biology and Clinical Investigation, 2013, 14, 87-97.	0.7	6
36	Expression of epigenetic effectors in decidualizing human endometrial stromal cells. Molecular Human Reproduction, 2012, 18, 451-458.	2.8	34

MARK CHRISTIAN

#	Article	IF	CITATIONS
37	Interactions between inflammatory signals and the progesterone receptor in regulating gene expression in pregnant human uterine myocytes. Journal of Cellular and Molecular Medicine, 2012, 16, 2487-2503.	3.6	33
38	A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization. Diabetes, 2012, 61, 3139-3147.	0.6	48
39	Absence of RIP140 Reveals a Pathway Regulating glut4-Dependent Glucose Uptake in Oxidative Skeletal Muscle through UCP1-Mediated Activation of AMPK. PLoS ONE, 2012, 7, e32520.	2.5	27
40	The role of androgens and the androgen receptor in cycling endometrium. Molecular and Cellular Endocrinology, 2012, 358, 166-175.	3.2	63
41	Disordered IL-33/ST2 Activation in Decidualizing Stromal Cells Prolongs Uterine Receptivity in Women with Recurrent Pregnancy Loss. PLoS ONE, 2012, 7, e52252.	2.5	185
42	NADPH Oxidase-Derived Reactive Oxygen Species Mediate Decidualization of Human Endometrial Stromal Cells in Response to Cyclic AMP Signaling. Endocrinology, 2011, 152, 730-740.	2.8	66
43	Down-Regulation of the Histone Methyltransferase EZH2 Contributes to the Epigenetic Programming of Decidualizing Human Endometrial Stromal Cells. Molecular Endocrinology, 2011, 25, 1892-1903.	3.7	82
44	Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nature Medicine, 2011, 17, 1509-1513.	30.7	157
45	Modulation of Clock Gene Expression by the Transcriptional Coregulator Receptor Interacting Protein 140 (RIP140). Journal of Biological Rhythms, 2011, 26, 187-199.	2.6	18
46	FOXO Transcription Factors and their Role in Disorders of the Female Reproductive Tract. Current Drug Targets, 2011, 12, 1291-1302.	2.1	20
47	The Poly(C)-Binding Protein-1 Regulates Expression of the Androgen Receptor. Endocrinology, 2010, 151, 3954-3964.	2.8	26
48	Definition of microRNAs That Repress Expression of the Tumor Suppressor Gene <i>FOXO1</i> in Endometrial Cancer. Cancer Research, 2010, 70, 367-377.	0.9	308
49	The Engineering of Brown Fat. Journal of Molecular Cell Biology, 2010, 2, 23-25.	3.3	17
50	The metabolic coregulator RIP140: an update. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E335-E340.	3.5	65
51	Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals. FASEB Journal, 2010, 24, 1541-1551.	0.5	88
52	Role of RIP140 in metabolic tissues: Connections to disease. FEBS Letters, 2008, 582, 39-45.	2.8	58
53	A Functional Interaction between RIP140 and PGC-1α Regulates the Expression of the Lipid Droplet Protein CIDEA. Molecular and Cellular Biology, 2008, 28, 6785-6795.	2.3	141
54	Coactivator function of RIP140 for NFκB/RelA-dependent cytokine gene expression. Blood, 2008, 112, 264-276.	1.4	108

MARK CHRISTIAN

#	Article	IF	CITATIONS
55	Role of the RIP140 Corepressor in Metabolic Regulation. , 2008, , 343-356.		0
56	Receptor Interacting Protein 140 Regulates Expression of Uncoupling Protein 1 in Adipocytes through Specific Peroxisome Proliferator Activated Receptor Isoforms and Estrogen-Related Receptor α. Molecular Endocrinology, 2007, 21, 1581-1592.	3.7	87
57	RIP140 directs histone and DNA methylation to silence Ucp1 expression in white adipocytes. EMBO Journal, 2007, 26, 4831-4840.	7.8	90
58	RIP140 Expression Is Stimulated by Estrogen-related Receptor α during Adipogenesis*. Journal of Biological Chemistry, 2006, 281, 32140-32147.	3.4	57
59	Metabolic regulation by the nuclear receptor corepressor RIP140. Trends in Endocrinology and Metabolism, 2006, 17, 243-250.	7.1	97
60	ZNF366 is an estrogen receptor corepressor that acts through CtBP and histone deacetylases. Nucleic Acids Research, 2006, 34, 6126-6136.	14.5	55
61	Physical Interaction and Mutual Transrepression between CCAAT/Enhancer-binding Protein β and the p53 Tumor Suppressor. Journal of Biological Chemistry, 2006, 281, 269-278.	3.4	31
62	RIP140-Targeted Repression of Gene Expression in Adipocytes. Molecular and Cellular Biology, 2005, 25, 9383-9391.	2.3	163
63	Convergence of Interferon-γ and Progesterone Signaling Pathways in Human Endometrium: Role of PIASy (Protein Inhibitor of Activated Signal Transducer and Activator of Transcription-y). Molecular Endocrinology, 2004, 18, 1988-1999.	3.7	26
64	Wild-Type p53 Protein Is Up-Regulated upon Cyclic Adenosine Monophosphate-Induced Differentiation of Human Endometrial Stromal Cells. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5233-5244.	3.6	53
65	Nuclear receptor corepressor RIP140 regulates fat accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8437-8442.	7.1	337
66	Characterization of Four Autonomous Repression Domains in the Corepressor Receptor Interacting Protein 140. Journal of Biological Chemistry, 2004, 279, 15645-15651.	3.4	60
67	Cyclic AMP-induced Forkhead Transcription Factor, FKHR, Cooperates with CCAAT/Enhancer-binding Protein Î ² in Differentiating Human Endometrial Stromal Cells. Journal of Biological Chemistry, 2002, 277, 20825-20832.	3.4	163
68	Functional Association of PR and CCAAT/Enhancer-Binding ProteinÎ ² Isoforms: Promoter-Dependent Cooperation between PR-B and Liver-Enriched Inhibitory Protein, or Liver-Enriched Activatory Protein and PR-A in Human Endometrial Stromal Cells. Molecular Endocrinology, 2002, 16, 141-154.	3.7	80
69	Aromatase P450 messenger RNA expression in eutopic endometrium is not a specific marker for pelvic endometriosis. Fertility and Sterility, 2002, 78, 825-829.	1.0	46
70	Mechanisms of decidualization. Reproductive BioMedicine Online, 2002, 4, 24-30.	2.4	44
71	Interferon-Î ³ Modulates Prolactin and Tissue Factor Expression in Differentiating Human Endometrial Stromal Cells ¹ . Endocrinology, 2001, 142, 3142-3151.	2.8	50
72	Interferon-Â Modulates Prolactin and Tissue Factor Expression in Differentiating Human Endometrial Stromal Cells. Endocrinology, 2001, 142, 3142-3151.	2.8	14