Yolanda Sanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168830/publications.pdf

Version: 2024-02-01

220 papers

17,590 citations

9264 74 h-index 122 g-index

226 all docs 226 docs citations

226 times ranked 18442 citing authors

#	Article	IF	CITATIONS
1	Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition, 2010, 104, 83-92.	2.3	710
2	Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research, 2010, 61, 219-225.	7.1	543
3	Interplay Between Weight Loss and Gut Microbiota Composition in Overweight Adolescents. Obesity, 2009, 17, 1906-1915.	3.0	392
4	Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nature Communications, 2015, 6, 7735.	12.8	372
5	Imbalance in the composition of the duodenal microbiota of children with coeliac disease. Journal of Medical Microbiology, 2007, 56, 1669-1674.	1.8	351
6	Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacological Research, 2013, 68, 95-107.	7.1	349
7	Bacteroides uniformis CECT 7771 Ameliorates Metabolic and Immunological Dysfunction in Mice with High-Fat-Diet Induced Obesity. PLoS ONE, 2012, 7, e41079.	2.5	311
8	Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. Journal of Clinical Pathology, 2009, 62, 264-269.	2.0	298
9	Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. International Journal of Obesity, 2009, 33, 758-767.	3.4	295
10	Influence of gut microbiota on neuropsychiatric disorders. World Journal of Gastroenterology, 2017, 23, 5486.	3. 3	286
11	Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiology, 2010, 10, 63.	3.3	282
12	Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. British Journal of Nutrition, 2009, 102, 1154-1160.	2.3	271
13	The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut, 2015, 64, 406-417.	12.1	254
14	The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 2018, 627, 1018-1038.	8.0	244
15	Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends in Food Science and Technology, 2016, 57, 213-232.	15.1	237
16	Gut microbiota in obesity and metabolic disorders. Proceedings of the Nutrition Society, 2010, 69, 434-441.	1.0	221
17	Differential immunomodulatory properties of <i>Bifidobacterium logum</i> strains: relevance to probiotic selection and clinical applications. Clinical and Experimental Immunology, 2007, 150, 531-538.	2.6	206
18	Dry-cured ham flavour: enzymatic generation and process influence. Food Chemistry, 1997, 59, 523-530.	8.2	204

#	Article	lF	CITATIONS
19	Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids, 2012, 28, 159-167.	10.7	202
20	The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Molecular Neurobiology, 2017, 54, 4432-4451.	4.0	191
21	The Impact of Probiotic on Gut Health. Current Drug Metabolism, 2009, 10, 68-78.	1.2	190
22	Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Frontiers in Neuroscience, 2018, 12, 155.	2.8	185
23	Depletion of <i>Blautia</i> Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening. MSystems, 2020, 5, .	3.8	185
24	Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS ONE, 2015, 10, e0126976.	2.5	179
25	Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONâ,,¢ portable nanopore sequencer. GigaScience, 2016, 5, 4.	6.4	176
26	Re-print of "Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host― Pharmacological Research, 2013, 69, 114-126.	7.1	175
27	Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clinical Nutrition, 2019, 38, 2504-2520.	5.0	175
28	Adhesion of Selected Bifidobacterium Strains to Human Intestinal Mucus and the Role of Adhesion in Enteropathogen Exclusion. Journal of Food Protection, 2005, 68, 2672-2678.	1.7	173
29	Low-pH Adaptation and the Acid Tolerance Response of <i>Bifidobacterium longum</i> Biotype longum. Applied and Environmental Microbiology, 2007, 73, 6450-6459.	3.1	173
30	Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiology, 2008, 8, 232.	3.3	172
31	<i>Bifidobacterium</i> CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity, 2013, 21, 2310-2321.	3.0	170
32	Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. American Journal of Clinical Nutrition, 2017, 106, 1005-1019.	4.7	168
33	Encapsulation of Living Bifidobacteria in Ultrathin PVOH Electrospun Fibers. Biomacromolecules, 2009, 10, 2823-2829.	5.4	163
34	Comparison of <i>in vitro</i> models to study bacterial adhesion to the intestinal epithelium. Letters in Applied Microbiology, 2009, 49, 695-701.	2.2	156
35	Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?. Nutrients, 2015, 7, 6900-6923.	4.1	151
36	Gut microbiota, diet, and obesityâ€related disorders—The good, the bad, and the future challenges. Molecular Nutrition and Food Research, 2017, 61, 1600252.	3.3	143

#	Article	IF	CITATIONS
37	Duodenal-Mucosal Bacteria Associated with Celiac Disease in Children. Applied and Environmental Microbiology, 2013, 79, 5472-5479.	3.1	141
38	Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunology and Medical Microbiology, 2007, 51, 562-568.	2.7	140
39	Unraveling the Ties between Celiac Disease and Intestinal Microbiota. International Reviews of Immunology, 2011, 30, 207-218.	3.3	132
40	Hydrolysis of Pork Muscle Sarcoplasmic Proteins by <i>Lactobacillus curvatus</i> and <i>Lactobacillus sake</i> Applied and Environmental Microbiology, 1999, 65, 578-584.	3.1	132
41	Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain, Behavior, and Immunity, 2017, 65, 43-56.	4.1	124
42	Understanding the role of gut microbiome in metabolic disease risk. Pediatric Research, 2015, 77, 236-244.	2.3	123
43	Bifidobacterium longum CECT 7347 Modulates Immune Responses in a Gliadin-Induced Enteropathy Animal Model. PLoS ONE, 2012, 7, e30744.	2.5	122
44	Influence of Milk-Feeding Type and Genetic Risk of Developing Coeliac Disease on Intestinal Microbiota of Infants: The PROFICEL Study. PLoS ONE, 2012, 7, e30791.	2.5	122
45	Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of <i>Bifidobacterium longum</i> CECT 7347 in children with newly diagnosed coeliac disease. British Journal of Nutrition, 2014, 112, 30-40.	2.3	121
46	Role of Intestinal Bacteria in Gliadin-Induced Changes in Intestinal Mucosa: Study in Germ-Free Rats. PLoS ONE, 2011, 6, e16169.	2.5	118
47	Influence of Environmental and Genetic Factors Linked to Celiac Disease Risk on Infant Gut Colonization by Bacteroides Species. Applied and Environmental Microbiology, 2011, 77, 5316-5323.	3.1	117
48	Commensal and Probiotic Bacteria Influence Intestinal Barrier Function and Susceptibility to Colitis in Nod1â^'/a^';Nod2â^'/a^' Mice. Inflammatory Bowel Diseases, 2012, 18, 1434-1446.	1.9	114
49	Gut Microbiota Dysbiosis Is Associated with Inflammation and Bacterial Translocation in Mice with CCl4-Induced Fibrosis. PLoS ONE, 2011, 6, e23037.	2.5	111
50	Characterization of Muscle Sarcoplasmic and Myofibrillar Protein Hydrolysis Caused by <i>Lactobacillus plantarum</i> . Applied and Environmental Microbiology, 1999, 65, 3540-3546.	3.1	109
51	Gut microbiota and attention deficit hyperactivity disorder: new perspectives for a challenging condition. European Child and Adolescent Psychiatry, 2017, 26, 1081-1092.	4.7	108
52	Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome, 2018, 6, 36.	11.1	107
53	Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice. American Journal of Pathology, 2015, 185, 2969-2982.	3.8	106
54	Microbiota, Inflammation and Obesity. Advances in Experimental Medicine and Biology, 2014, 817, 291-317.	1.6	104

#	Article	IF	Citations
55	Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. Journal of Cellular Biochemistry, 2010, 109, 801-807.	2.6	103
56	Human milk composition differs in healthy mothers and mothers with celiac disease. European Journal of Nutrition, 2015, 54, 119-128.	3.9	101
57	Hydrolysis of muscle myofibrillar proteins by Lactobacillus curvatus and Lactobacillus sake. International Journal of Food Microbiology, 1999, 53, 115-125.	4.7	100
58	2â€DE and MS analysis of key proteins in the adhesion of <i>Lactobacillus plantarum</i> , a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis, 2009, 30, 949-956.	2.4	97
59	Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. Journal of Inflammation, 2008, 5, 19.	3.4	96
60	Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut Microbes, 2010, 1, 135-137.	9.8	93
61	Discerning the Role of Bacteroides fragilis in Celiac Disease Pathogenesis. Applied and Environmental Microbiology, 2012, 78, 6507-6515.	3.1	93
62	Gut microbiota and probiotics in maternal and infant health. American Journal of Clinical Nutrition, 2011, 94, S2000-S2005.	4.7	90
63	Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori. International Journal of Antimicrobial Agents, 2005, 25, 385-391.	2.5	89
64	Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food and Function, 2018, 9, 1672-1682.	4.6	87
65	Differences between the fecal microbiota of coeliac infants and healthy controls. Current Issues in Intestinal Microbiology, 2007, 8, 9-14.	2.5	86
66	Production of Bacteriocin-Like Inhibitory Compounds by Human Fecal Bifidobacterium Strains. Journal of Food Protection, 2005, 68, 1034-1040.	1.7	83
67	Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinIONâ,,¢ portable nanopore sequencer. GigaScience, 2017, 6, 1-12.	6.4	83
68	PCR-based fingerprinting techniques for rapid detection of animal species in meat products. Meat Science, 2004, 66, 659-665.	5.5	82
69	Intestinal Bacteroides species associated with coeliac disease. Journal of Clinical Pathology, 2010, 63, 1105-1111.	2.0	82
70	Prebiotic potential of a refined product containing pectic oligosaccharides. LWT - Food Science and Technology, 2011, 44, 1687-1696.	5.2	82
71	High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection. American Journal of Physiology - Renal Physiology, 2014, 307, G459-G470.	3.4	82
72	High-protein diets for weight management: Interactions with the intestinal microbiota and consequences for gut health. A position paper by the my new gut study group. Clinical Nutrition, 2019, 38, 1012-1022.	5.0	82

#	Article	IF	Citations
73	Understanding the role of gut microbes and probiotics in obesity: How far are we?. Pharmacological Research, 2013, 69, 144-155.	7.1	81
74	<i>Bacteroides uniformis</i> combined with fiber amplifies metabolic and immune benefits in obese mice. Gut Microbes, 2021, 13, 1-20.	9.8	81
75	Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews, 2018, 19, 435-451.	6.5	77
76	Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium. Clinical Nutrition, 2020, 39, 414-424.	5.0	77
77	Intestinal Dysbiosis, Gut Hyperpermeability and Bacterial Translocation: Missing Links Between Depression, Obesity and Type 2 Diabetes. Current Pharmaceutical Design, 2016, 22, 6087-6106.	1.9	77
78	Pivotal Advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. Journal of Leukocyte Biology, 2009, 87, 765-778.	3.3	76
79	Health Claims in Europe: Probiotics and Prebiotics as Case Examples. Annual Review of Food Science and Technology, 2012, 3, 247-261.	9.9	75
80	Future for probiotic science in functional food and dietary supplement development. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 679-687.	2.5	75
81	Adhesion Properties and Competitive Pathogen Exclusion Ability of Bifidobacteria with Acquired Acid Resistance. Journal of Food Protection, 2006, 69, 1675-1679.	1.7	72
82	Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children. BMC Gastroenterology, 2008, 8, 50.	2.0	70
83	Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight individuals with signs of metabolic syndrome: A randomized cross-over trial. Clinical Nutrition, 2020, 39, 67-79.	5.0	68
84	Probiotics as Drugs Against Human Gastrointestinal Infections. Recent Patents on Anti-infective Drug Discovery, 2007, 2, 148-156.	0.8	67
85	Characterization of an acid phosphatase from Lactobacillus pentosus: regulation and biochemical properties. Journal of Applied Microbiology, 2005, 98, 229-237.	3.1	66
86	Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: A way of selecting improved probiotic strains. International Dairy Journal, 2007, 17, 1284-1289.	3.0	66
87	Selection of lactic acid bacteria with high phytate degrading activity for application in whole wheat breadmaking. LWT - Food Science and Technology, 2008, 41, 82-92.	5.2	65
88	Pre-obese children's dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Communications Biology, 2018, 1, 222.	4.4	65
89	Resistance to Simulated Gastrointestinal Conditions and Adhesion to Mucus as Probiotic Criteria for Bifidobacterium longum Strains. Current Microbiology, 2008, 56, 613-618.	2.2	64
90	Hydrolytic Action ofLactobacillus caseiCRL 705 on Pork Muscle Sarcoplasmic and Myofibrillar Proteins. Journal of Agricultural and Food Chemistry, 1999, 47, 3441-3448.	5.2	63

#	Article	lF	Citations
91	Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice. PLoS ONE, 2009, 4, e6472.	2.5	63
92	Gut Microbiota and Probiotics in Modulation of Epithelium and Gut-Associated Lymphoid Tissue Function. International Reviews of Immunology, 2009, 28, 397-413.	3.3	62
93	Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. International Journal of Food Microbiology, 2001, 68, 199-206.	4.7	61
94	Immune Development and Intestinal Microbiota in Celiac Disease. Clinical and Developmental Immunology, 2012, 2012, 1-12.	3.3	61
95	Bifidobacterium pseudocatenulatum CECT 7765 Ameliorates Neuroendocrine Alterations Associated with an Exaggerated Stress Response and Anhedonia in Obese Mice. Molecular Neurobiology, 2018, 55, 5337-5352.	4.0	61
96	A Multi-omics Approach to Unraveling the Microbiome-Mediated Effects of Arabinoxylan Oligosaccharides in Overweight Humans. MSystems, 2019, 4, .	3.8	61
97	Purification and Characterization of an Aminopeptidase fromLactobacillus sake. Journal of Agricultural and Food Chemistry, 1997, 45, 1552-1558.	5.2	60
98	Purification and Characterization of a Prolyl Aminopeptidase from Debaryomyces hansenii. Applied and Environmental Microbiology, 2003, 69, 227-232.	3.1	59
99	Purification and Characterization of an Arginine Aminopeptidase from Lactobacillus sakei. Applied and Environmental Microbiology, 2002, 68, 1980-1987.	3.1	58
100	Probiotics and clinical effects: is the number what counts?. Journal of Chemotherapy, 2013, 25, 193-212.	1.5	58
101	Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes, 2018, 9, 1-8.	9.8	58
102	Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clinical Nutrition, 2019, 38, 1995-2001.	5.0	58
103	Sensory improvement of dry-fermented sausages by the addition of cell-free extracts from Debaryomyces hansenii and Lactobacillus sakei. Meat Science, 2006, 72, 457-466.	5 . 5	57
104	Intestinal <i>Staphylococcus spp. </i> and virulent features associated with coeliac disease. Journal of Clinical Pathology, 2012, 65, 830-834.	2.0	56
105	Induction of acid resistance in <i>Bifidobacterium</i> : a mechanism for improving desirable traits of potentially probiotic strains. Journal of Applied Microbiology, 2007, 103, 1147-1157.	3.1	54
106	Cactus pear (<i>Opuntia ficus-indica</i>) juice fermented with autochthonous <i>Lactobacillus plantarum</i> S-811. Food and Function, 2019, 10, 1085-1097.	4.6	53
107	Method for direct selection of potentially probiotic Bifidobacterium strains from human feces based on their acid-adaptation ability. Journal of Microbiological Methods, 2006, 66, 560-563.	1.6	51
108	Phytate Reduction in Bran-Enriched Bread by Phytase-Producing Bifidobacteria. Journal of Agricultural and Food Chemistry, 2009, 57, 10239-10244.	5.2	51

#	Article	IF	CITATIONS
109	Modulation of phenotypic and functional maturation of dendritic cells by intestinal bacteria and gliadin: relevance for celiac disease. Journal of Leukocyte Biology, 2012, 92, 1043-1054.	3.3	51
110	Purification and Characterization of an X-Prolyl-Dipeptidyl Peptidase from Lactobacillus sakei. Applied and Environmental Microbiology, 2001, 67, 1815-1820.	3.1	50
111	Phytase activity as a novel metabolic feature inBifidobacterium. FEMS Microbiology Letters, 2005, 247, 231-239.	1.8	50
112	Infant feeding and risk of developing celiac disease: a systematic review. BMJ Open, 2016, 6, e009163.	1.9	50
113	Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Molecular Metabolism, 2020, 42, 101076.	6.5	50
114	Purification and Characterization of a Tripeptidase fromLactobacillus sake. Journal of Agricultural and Food Chemistry, 1998, 46, 349-353.	5.2	49
115	Bread Supplemented with Amaranth (Amaranthus cruentus): Effect of Phytates on In Vitro Iron Absorption. Plant Foods for Human Nutrition, 2012, 67, 50-56.	3.2	49
116	Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends in Food Science and Technology, 2016, 57, 201-212.	15.1	48
117	Drugâ€related deaths in hospital inpatients: A retrospective cohort study. British Journal of Clinical Pharmacology, 2018, 84, 542-552.	2.4	48
118	Purification and properties of an arginyl aminopeptidase from Debaryomyces hansenii. International Journal of Food Microbiology, 2003, 86, 141-151.	4.7	47
119	The Glycolytic Versatility of Bacteroides uniformis CECT 7771 and Its Genome Response to Oligo and Polysaccharides. Frontiers in Cellular and Infection Microbiology, 2017, 7, 383.	3.9	47
120	The Potential Role of the Dipeptidyl Peptidase-4-Like Activity From the Gut Microbiota on the Host Health. Frontiers in Microbiology, 2018, 9, 1900.	3.5	47
121	The Role of Microbiota and Intestinal Permeability in the Pathophysiology of Autoimmune and Neuroimmune Processes with an Emphasis on Inflammatory Bowel Disease Type 1 Diabetes and Chronic Fatigue Syndrome. Current Pharmaceutical Design, 2016, 22, 6058-6075.	1.9	47
122	Gut microbiota-related complications in cirrhosis. World Journal of Gastroenterology, 2014, 20, 15624.	3.3	46
123	Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. International Journal of Food Microbiology, 2007, 117, 76-84.	4.7	44
124	Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques. Veterinary Microbiology, 2007, 121, 299-306.	1.9	44
125	Selection of phytate-degrading human bifidobacteria and application in whole wheat dough fermentation. Food Microbiology, 2008, 25, 169-176.	4.2	43
126	Microbiome and Gluten. Annals of Nutrition and Metabolism, 2015, 67, 27-42.	1.9	43

#	Article	IF	CITATION
127	Protective effect of <i>Bifidobacterium pseudocatenulatum </i> <scp>CECT</scp> 7765 against induced bacterial antigen translocation in experimental cirrhosis. Liver International, 2014, 34, 850-858.	3.9	41
128	Safety Assessment of Bacteroides uniformis CECT 7771 Isolated from Stools of Healthy Breast-Fed Infants. PLoS ONE, 2016, 11, e0145503.	2.5	39
129	Immunostimulatory effect of faecal (i) Bifidobacterium (i) species of breast-fed and formula-fed infants in a peripheral blood mononuclear cell/Caco-2 co-culture system. British Journal of Nutrition, 2011, 106, 1216-1223.	2.3	38
130	The Microbiota and the Gut–Brain Axis in Controlling Food Intake and Energy Homeostasis. International Journal of Molecular Sciences, 2021, 22, 5830.	4.1	37
131	Gut bless you: The microbiota-gut-brain axis in irritable bowel syndrome. World Journal of Gastroenterology, 2022, 28, 412-431.	3.3	37
132	Protease and esterase activity of staphylococci. International Journal of Food Microbiology, 2006, 112, 223-229.	4.7	36
133	Influence of Bifidobacterium longum CECT 7347 and Gliadin Peptides on Intestinal Epithelial Cell Proteome. Journal of Agricultural and Food Chemistry, 2011, 59, 7666-7671.	5.2	36
134	Is it true that coeliacs do not digest gliadin? Degradation pattern of gliadin in coeliac disease small intestinal mucosa. Gut, 2009, 58, 886-887.	12.1	35
135	Bifidobacterium pseudocatenulatum CECT 7765 supplementation improves inflammatory status in insulin-resistant obese children. European Journal of Nutrition, 2018, 58, 2789-2800.	3.9	35
136	Insights into the Roles of Gut Microbes in Obesity. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-9.	1.4	34
137	Effect of pre-ripening on microbial and chemical changes in dry fermented sausages. Food Microbiology, 1997, 14, 575-582.	4.2	33
138	Antibiotic exposure in pregnancy and risk of coeliac disease in offspring: a cohort study. BMC Gastroenterology, 2014, 14, 75.	2.0	33
139	Bacteroides uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue axis involving TLR5 signaling in obese mice. Scientific Reports, 2021, 11, 11788.	3.3	33
140	Genetic and functional characterization of dpp genes encoding a dipeptide transport system in Lactococcus lactis. Archives of Microbiology, 2001, 175, 334-343.	2.2	32
141	Innovation in microbiome-based strategies for promoting metabolic health. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 484-491.	2.5	32
142	Assessment of Iron Bioavailability in Whole Wheat Bread by Addition of Phytase-Producing Bifidobacteria. Journal of Agricultural and Food Chemistry, 2012, 60, 3190-3195.	5.2	31
143	Hepatic molecular responses to Bifidobacterium pseudocatenulatum CECT 7765 in a mouse model of Adiet-induced obesity. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 57-64.	2.6	31
144	Bifidobacterium pseudocatenulatum CECT7765 induces an M2 anti-inflammatory transition in macrophages from patients with cirrhosis. Journal of Hepatology, 2016, 64, 135-145.	3.7	31

#	Article	IF	CITATION
145	Effect of nitrate and nitrite curing salts on microbial changes and sensory quality of non-fermented sausages. International Journal of Food Microbiology, 1998, 42, 213-217.	4.7	29
146	Towards microbiome-informed dietary recommendations for promoting metabolic and mental health: Opinion papers of the MyNewGut project. Clinical Nutrition, 2018, 37, 2191-2197.	5.0	29
147	Bifidobacterium pseudocatenulatum CECT 7765 reverses the adverse effects of diet-induced obesity through the gut-bone axis. Bone, 2020, 141, 115580.	2.9	28
148	Microbial enterotypes beyond genus level: <i>Bacteroides</i> species as a predictive biomarker for weight change upon controlled intervention with arabinoxylan oligosaccharides in overweight subjects. Gut Microbes, 2020, 12, 1847627.	9.8	28
149	Oral administration of Bifidobacterium longum CECT 7347 modulates jejunal proteome in an in vivo gliadin-induced enteropathy animal model. Journal of Proteomics, 2012, 77, 310-320.	2.4	27
150	Host genotype, intestinal microbiota and inflammatory disorders. British Journal of Nutrition, 2013, 109, \$76-\$80.	2.3	27
151	Plant sterols and human gut microbiota relationship: An in vitro colonic fermentation study. Journal of Functional Foods, 2018, 44, 322-329.	3.4	27
152	Safety Assessment of Bacteroides Uniformis CECT 7771, a Symbiont of the Gut Microbiota in Infants. Nutrients, 2020, 12, 551.	4.1	27
153	Sex, Food, and the Gut Microbiota: Disparate Response to Caloric Restriction Diet with Fiber Supplementation in Women and Men. Molecular Nutrition and Food Research, 2021, 65, e2000996.	3.3	27
154	Characterization of Lactobacillus sake isolates from dry-cured sausages by restriction fragment length polymorphism analysis of the 16S rRNA gene. Journal of Applied Microbiology, 1998, 84, 600-606.	3.1	26
155	Meat Fermentation Technology. , 2001, , .		26
156	Purification and characterisation of Proteases A and D from Debaryomyces hansenii. International Journal of Food Microbiology, 2008, 124, 135-141.	4.7	25
157	Increased Bacterial Translocation in Gluten-Sensitive Mice Is Independent of Small Intestinal Paracellular Permeability Defect. Digestive Diseases and Sciences, 2012, 57, 38-47.	2.3	25
158	Breast-Milk Microbiota Linked to Celiac Disease Development in Children: A Pilot Study From the PreventCD Cohort. Frontiers in Microbiology, 2020, 11, 1335.	3.5	24
159	Influence of early environmental factors on lymphocyte subsets and gut microbiota in infants at risk of celiac disease; the PROFICEL study. Nutricion Hospitalaria, 2013, 28, 464-73.	0.3	24
160	Bifidobacterium pseudocatenulatum CECT7765 promotes a TLR2-dependent anti-inflammatory response in intestinal lymphocytes from mice with cirrhosis. European Journal of Nutrition, 2016, 55, 197-206.	3.9	23
161	Protease B from Debaryomyces hansenii: purification and biochemical properties. International Journal of Food Microbiology, 2005, 98, 167-177.	4.7	22
162	Gut Microbiota and Risk of Developing Celiac Disease. Journal of Clinical Gastroenterology, 2016, 50, S148-S152.	2.2	22

#	Article	IF	CITATIONS
163	Characterization of the Gastrointestinal Mucosa–Associated Microbiota of Pigs and Chickens Using Culture-Based and Molecular Methodologies. Journal of Food Protection, 2007, 70, 2799-2804.	1.7	21
164	The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101542.	4.7	21
165	Microbiota intestinal y salud. GastroenterologÃa Y HepatologÃa, 2021, 44, 519-535.	0.5	21
166	Specificity of the second binding protein of the peptide ABC-transporter (Dpp) of Lactococcus lactis L1403. FEMS Microbiology Letters, 2003, 227, 33-38.	1.8	20
167	Bacteroides uniformis CECT 7771 Modulates the Brain Reward Response to Reduce Binge Eating and Anxiety-Like Behavior in Rat. Molecular Neurobiology, 2021, 58, 4959-4979.	4.0	20
168	Aminopeptidase Activities from Lactobacillus sake in Models of Curing Ingredients and Processing Conditions for Dry Sausage. Journal of Food Science, 1997, 62, 1211-1234.	3.1	19
169	Oral administration of <i>Bifidobacterium longum </i> CECT 7347 ameliorates gliadin-induced alterations in liver iron mobilisation. British Journal of Nutrition, 2013, 110, 1828-1836.	2.3	19
170	Unpurified Gelidium-extracted carbohydrate-rich fractions improve probiotic protection during storage. LWT - Food Science and Technology, 2018, 96, 694-703.	5.2	19
171	Kinetics and Structural Requirements for the Binding Protein of the Di-tripeptide Transport System of Lactococcus lactis. Biochemistry, 2000, 39, 4855-4862.	2.5	18
172	Application of Bifidobacterium strains to the breadmaking process. Process Biochemistry, 2006, 41, 2434-2440.	3.7	18
173	Phytate degradation by Bifidobacterium on whole wheat fermentation. European Food Research and Technology, 2008, 226, 825-831.	3.3	18
174	Neoglycoconjugates of caseinomacropeptide and galactooligosaccharides modify adhesion of intestinal pathogens and inflammatory response(s) of intestinal (Caco-2) cells. Food Research International, 2013, 54, 1096-1102.	6.2	18
175	<i>Holdemanella biformis</i> improves glucose tolerance and regulates GLP†signaling in obese mice. FASEB Journal, 2021, 35, e21734.	0.5	18
176	Calling for a systems approach in microbiome research and innovation. Current Opinion in Biotechnology, 2022, 73, 171-178.	6.6	18
177	Transformation of Organoarsenical Species by the Microflora of Freshwater Crayfish. Journal of Agricultural and Food Chemistry, 2005, 53, 10297-10305.	5.2	17
178	Maillard-type glycoconjugates from dairy proteins inhibit adhesion of Escherichia coli to mucin. Food Chemistry, 2011, 129, 1435-1443.	8.2	17
179	Immune-modulating effects in mouse dendritic cells of lactobacilli and bifidobacteria isolated from individuals following omnivorous, vegetarian and vegan diets. Cytokine, 2017, 97, 141-148.	3.2	17
180	Editorial: Exploring the need to include microbiomes into EFSA's scientific assessments. EFSA Journal, 2020, 18, e18061.	1.8	17

#	Article	IF	CITATIONS
181	Influence of breastfeeding versus formula feeding on lymphocyte subsets in infants at risk of coeliac disease: the PROFICEL study. European Journal of Nutrition, 2013, 52, 637-646.	3.9	16
182	Novel Perspectives in Celiac Disease Therapy. Mini-Reviews in Medicinal Chemistry, 2009, 9, 359-367.	2.4	16
183	Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis. Journal of Hepatology, 2014, 61, 799-808.	3.7	15
184	Influence of Added Enzymes and Bran Particle Size on Bread Quality and Iron Availability. Cereal Chemistry, 2012, 89, 223-229.	2.2	14
185	<i>Bifidobacterium pseudocatenulatum</i> CECT 7765 supplementation restores altered vascular function in an experimental model of obese mice. International Journal of Medical Sciences, 2017, 14, 444-451.	2.5	14
186	Pilot, double-blind, randomized, placebo-controlled clinical trial of the supplement food Nyaditum resae \hat{A}^{\otimes} in adults with or without latent TB infection: Safety and immunogenicity. PLoS ONE, 2017, 12, e0171294.	2.5	14
187	Dietary glycosaminoglycans interfere in bacterial adhesion and gliadin-induced pro-inflammatory response in intestinal epithelial (Caco-2) cells. International Journal of Biological Macromolecules, 2010, 47, 458-464.	7.5	13
188	Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765. European Journal of Nutrition, 2019, 58, 1647-1658.	3.9	13
189	Genome Structure of the Symbiont Bifidobacterium pseudocatenulatum CECT 7765 and Gene Expression Profiling in Response to Lactulose-Derived Oligosaccharides. Frontiers in Microbiology, 2016, 7, 624.	3.5	12
190	Prevalence, Abundance, and Virulence of Adherent-Invasive Escherichia coli in Ulcerative Colitis, Colorectal Cancer, and Coeliac Disease. Frontiers in Immunology, 2022, 13, 748839.	4.8	12
191	Aminopeptidases. , 2007, , 243-260.		11
192	Dietary strategies of immunomodulation in infants at risk for celiac disease. Proceedings of the Nutrition Society, 2010, 69, 347-353.	1.0	10
193	Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems $\hat{a} \in A$ Selection of Case Studies. Frontiers in Microbiology, 0, 13, .	3.5	10
194	Contribution of muscle and microbial aminopeptidases to flavor development in dry-cured meat products. Developments in Food Science, 1998, 40, 547-557.	0.0	8
195	Protease (PrA and PrB) and prolyl and arginyl aminopeptidase activities from Debaryomyces hansenii as a function of growth phase and nutrient sources. International Journal of Food Microbiology, 2006, 107, 20-26.	4.7	8
196	Gut microbes and health. GastroenterologÃa Y HepatologÃa (English Edition), 2021, 44, 519-535.	0.1	8
197	Myoglobin as an Inhibitor of Exopeptidases from <i>Lactobacillus sake</i> . Applied and Environmental Microbiology, 1998, 64, 2313-2314.	3.1	8
198	Species- and strain-level assessment using <i>rrn</i> long-amplicons suggests donor's influence on gut microbial transference via fecal transplants in metabolic syndrome subjects. Gut Microbes, 2022, 14, .	9.8	8

#	Article	IF	Citations
199	Two homologous oligopeptide binding protein genes (oppA) in Lactococcus lactis MG1363. International Journal of Food Microbiology, 2004, 97, 9-15.	4.7	7
200	Computational strategies for the discovery of biological functions of health foods, nutraceuticals and cosmeceuticals: a review. Molecular Diversity, 2021, 25, 1425-1438.	3.9	7
201	Intestinal bacteria and probiotics: effects on the immune system and impacts on human health. , 2013, , 267-291.		5
202	Complete Genome Sequence of Phascolarctobacterium faecium G 104 , Isolated from the Stools of a Healthy Lean Donor. Microbiology Resource Announcements, 2021 , 10 , .	0.6	5
203	Safety of heatâ€killed Mycobacterium setense manresensis as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 2019, 17, e05824.	1.8	4
204	The Allium Derivate Propyl Propane Thiosulfinate Exerts Anti-Obesogenic Effects in a Murine Model of Diet-Induced Obesity. Nutrients, 2022, 14, 440.	4.1	4
205	Polyamines Affect Activity of Aminopeptidases from Lactobacillus sake. Journal of Food Science, 1997, 62, 870-872.	3.1	3
206	Applying Reinforcement Learning to Multi-robot Team Coordination. Lecture Notes in Computer Science, 2008, , 625-632.	1.3	3
207	Probiotics and Prebiotics in Metabolic Disorders and Obesity. , 2010, , 237-258.		3
208	Impaired responses to gliadin and gut microbes of immune cells from mice with altered stress-related behavior and premature immune senescence. Journal of Neuroimmunology, 2014, 276, 47-57.	2.3	3
209	Tiny contributors to severe obesity inside the gut. Gut, 2022, 71, 2376-2378.	12.1	2
210	Simple, Sensitive Assay for Microbial Aminopeptidase. Journal of Food Science, 1997, 62, 583-585.	3.1	1
211	Gut microbiota in the etiopathogenesis of celiac disease. , 2021, , 45-64.		1
212	Microbiota intestinal y enfermedad celÃaca. , 0, , 479-496.		1
213	Intestinal Microbiota and Celiac Disease. , 2014, , 477-494.		1
214	Probiotics: Benefits in Human Health and Bacterial Disease Management., 0,, 275-295.		0
215	Imbalance in the composition of the duodenal microbiota of children with coeliac disease. Journal of Medical Microbiology, 2008, 57, 401-401.	1.8	0
216	Role of Gut Microbes in Celiac Disease Risk and Pathogenesis. Clinical Gastroenterology, 2014, , 81-94.	0.0	0

#	Article	IF	CITATIONS
217	From Bacterial Genomics to Human Health. , 2017, , 159-172.		0
218	Applying Reinforcement Learning to Multi-robot System Behavior Coordination. Lecture Notes in Computer Science, 2009, , 413-420.	1.3	0
219	Probiotics as Drugs Against Human Gastrointestinal Pathogens. , 2012, , 107-123.		0
220	Intestinal Microbiota and Celiac Disease., 2015,, 193-221.		0