Jong-Joo Cheong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biosynthesis of essential oil compounds in <i>Ocimum tenuiflorum</i> is induced by abiotic stresses. Plant Biosystems, 2022, 156, 353-357.	1.6	8
2	Modulation of abscisic acid signaling for stomatal operation under salt stress conditions. Advances in Botanical Research, 2022, , 89-121.	1.1	2
3	Genetic and Epigenetic Changes in Plants in Response to Abiotic Stress. Genes, 2021, 12, 1603.	2.4	2
4	Recurrent Drought Conditions Enhance the Induction of Drought Stress Memory Genes in Glycine max L. Frontiers in Genetics, 2020, 11, 576086.	2.3	26
5	Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. International Journal of Molecular Sciences, 2020, 21, 9517.	4.1	38
6	Chromatin remodeling for the transcription of type 2C protein phosphatase genes in response to salt stress. Plant Physiology and Biochemistry, 2019, 141, 325-331.	5.8	27
7	AtMYB44 suppresses transcription of the late embryogenesis abundant protein gene AtLEA4-5. Biochemical and Biophysical Research Communications, 2019, 511, 931-934.	2.1	16
8	H2A.Z-containing nucleosomes are evicted to activate AtMYB44 transcription in response to salt stress. Biochemical and Biophysical Research Communications, 2018, 499, 1039-1043.	2.1	31
9	AtMYB44 interacts with TOPLESS-RELATED corepressors to suppress protein phosphatase 2C gene transcription. Biochemical and Biophysical Research Communications, 2018, 507, 437-442.	2.1	19
10	The AtMYB44 promoter is accessible to signals that induce different chromatin modifications for gene transcription. Plant Physiology and Biochemistry, 2018, 130, 14-19.	5.8	9
11	Intergenic transformation of AtMYB44 confers drought stress tolerance in rice seedlings. Applied Biological Chemistry, 2017, 60, 447-455.	1.9	10
12	Determination of the consensus sequence for FUS3-specific binding by protein binding microarray analysis. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58, 723-728.	0.9	0
13	Overexpression of the 3′(2′),5′-bisphosphate nucleotidase gene AtAHL confers enhanced resistance to Pectobacterium carotovorum in Arabidopsis. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 21-26.	0.9	3
14	Quadruple 9-mer-Based Protein Binding Microarray Analysis Confirms AACnG as the Consensus Nucleotide Sequence Sufficient for the Specific Binding of AtMYB44. Molecules and Cells, 2012, 34, 531-538.	2.6	18
15	Quadruple 9-mer-based protein binding microarray analysis of the arabidopsis transcription factor AtMYB77. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 819-822.	0.9	2
16	Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean. Molecular Breeding, 2012, 29, 601-608.	2.1	73
17	AtCPL5, a novel Serâ€2â€specific RNA polymerase II Câ€terminal domain phosphatase, positively regulates ABA and drought responses in Arabidopsis. New Phytologist, 2011, 190, 57-74.	7.3	22
18	Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato. Plant Biotechnology Reports, 2011, 5, 27-34.	1.5	25

JONG-JOO CHEONG

#	Article	IF	CITATIONS
19	Non-Specific Phytohormonal Induction of AtMYB44 and Suppression of Jasmonate-Responsive Gene Activation in Arabidopsis thaliana. Molecules and Cells, 2010, 29, 71-76.	2.6	57
20	The Arabidopsis AtLEC Gene Encoding a Lectin-like Protein Is Up-Regulated by Multiple Stimuli Including Developmental Signal, Wounding, Jasmonate, Ethylene, and Chitin Elicitor. Molecules and Cells, 2009, 27, 75-82.	2.6	20
21	Overexpression of <i>AtMYB44</i> Enhances Stomatal Closure to Confer Abiotic Stress Tolerance in Transgenic Arabidopsis. Plant Physiology, 2008, 146, 323-324.	4.8	595
22	Signaling pathways for the Biosynthesis and action of Jasmonates. Journal of Plant Biology, 2007, 50, 122-131.	2.1	11
23	Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports, 2007, 26, 1053-1063.	5.6	151
24	Complementation of an E. coli cysteine auxotrophic mutant for the structural modification study of 3′(2′),5′-bisphosphate nucleotidase. Biotechnology Letters, 2007, 29, 913-918.	2.2	4
25	Methyl jasmonate as a vital substance in plants. Trends in Genetics, 2003, 19, 409-413.	6.7	423
26	Title is missing!. Molecular Breeding, 2002, 9, 171-181.	2.1	19