
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168596/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multivariate Bayesian clustering using covariateâ€informed components with application to boreal vegetation sensitivity. Biometrics, 2022, 78, 1427-1440.                                                                      | 1.4 | 3         |
| 2  | Rapid proliferation of the parasitic copepod, <i>Salmincola californiensis</i> (Dana), on kokanee<br>salmon, <i>Oncorhynchus nerka</i> (Walbaum), in a large Colorado reservoir. Journal of Fish<br>Diseases, 2022, 45, 89-98. | 1.9 | 6         |
| 3  | Recursive Bayesian computation facilitates adaptive optimal design in ecological studies. Ecology, 2022, 103, e03573.                                                                                                          | 3.2 | 4         |
| 4  | Individual heterogeneity influences the effects of translocation on urban dispersal of an invasive reptile. Movement Ecology, 2022, 10, 2.                                                                                     | 2.8 | 2         |
| 5  | Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data. International Statistical Review, 2022, 90, 328-345.                                                                                 | 1.9 | 1         |
| 6  | Searching for refuge: A framework for identifying site factors conferring resistance to climateâ€driven vegetation change. Diversity and Distributions, 2022, 28, 793-809.                                                     | 4.1 | 6         |
| 7  | Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling. Journal of Agricultural, Biological, and Environmental Statistics, 2022, 27, 382.                                                  | 1.4 | 0         |
| 8  | Linking male reproductive success to effort within and among nests in a coâ€breeding stream fish.<br>Ethology, 2022, 128, 489-498.                                                                                             | 1.1 | 1         |
| 9  | Scaleâ€dependent influence of the sagebrush community on genetic connectivity of the sagebrush<br>obligate Gunnison sageâ€grouse. Molecular Ecology, 2022, 31, 3267-3285.                                                      | 3.9 | 4         |
| 10 | Bayesian inverse reinforcement learning for collective animal movement. Annals of Applied Statistics, 2022, 16, .                                                                                                              | 1.1 | 2         |
| 11 | Community confounding in joint species distribution models. Scientific Reports, 2022, 12, .                                                                                                                                    | 3.3 | 4         |
| 12 | Hierarchical computing for hierarchical models in ecology. Methods in Ecology and Evolution, 2021, 12, 245-254.                                                                                                                | 5.2 | 7         |
| 13 | Making Recursive Bayesian Inference Accessible. American Statistician, 2021, 75, 185-194.                                                                                                                                      | 1.6 | 34        |
| 14 | Improving inferences about private land conservation by accounting for incomplete reporting.<br>Conservation Biology, 2021, 35, 1174-1185.                                                                                     | 4.7 | 4         |
| 15 | Statistical Challenges in Agent-Based Modeling. American Statistician, 2021, 75, 235-242.                                                                                                                                      | 1.6 | 7         |
| 16 | Diffusion modeling reveals effects of multiple release sites and human activity on a recolonizing apex predator. Movement Ecology, 2021, 9, 34.                                                                                | 2.8 | 8         |
| 17 | Bridging implementation gaps to connect large ecological datasets and complex models. Ecology and Evolution, 2021, 11, 18271-18287.                                                                                            | 1.9 | 1         |
| 18 | Nonlinear reaction–diffusion process models improve inference for population dynamics.<br>Environmetrics, 2020, 31, e2604.                                                                                                     | 1.4 | 11        |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Compound effects of water clarity, inflow, wind and climate warming on mountain lake thermal regimes. Aquatic Sciences, 2020, 82, 1.                             | 1.5 | 13        |
| 20 | Statistical Implementations of Agentâ€Based Demographic Models. International Statistical Review, 2020, 88, 441-461.                                             | 1.9 | 13        |
| 21 | Animal movement models with mechanistic selection functions. Spatial Statistics, 2020, 37, 100406.                                                               | 1.9 | 8         |
| 22 | Modelâ€based clustering reveals patterns in central place use of a marine top predator. Ecosphere, 2020, 11, e03123.                                             | 2.2 | 4         |
| 23 | What processes must we understand to forecast regional-scale population dynamics?. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202219. | 2.6 | 16        |
| 24 | Linking mosquito surveillance to dengue fever through Bayesian mechanistic modeling. PLoS<br>Neglected Tropical Diseases, 2020, 14, e0008868.                    | 3.0 | 8         |
| 25 | Extreme site fidelity as an optimal strategy in an unpredictable and homogeneous environment.<br>Functional Ecology, 2019, 33, 1695-1707.                        | 3.6 | 24        |
| 26 | Estimating lake–climate responses from sparse data: An application to high elevation lakes. Limnology<br>and Oceanography, 2019, 64, 1371-1385.                  | 3.1 | 11        |
| 27 | The rise of an apex predator following deglaciation. Diversity and Distributions, 2019, 25, 895-908.                                                             | 4.1 | 14        |
| 28 | Comparing and improving methods for reconstructing peatland water-table depth from testate amoebae. Holocene, 2019, 29, 1350-1361.                               | 1.7 | 5         |
| 29 | Accounting for Phenology in the Analysis of Animal Movement. Biometrics, 2019, 75, 810-820.                                                                      | 1.4 | 11        |
| 30 | Spatially structured statistical network models for landscape genetics. Ecological Monographs, 2019,<br>89, e01355.                                              | 5.4 | 27        |
| 31 | Running on empty: recharge dynamics from animal movement data. Ecology Letters, 2019, 22, 377-389.                                                               | 6.4 | 24        |
| 32 | Animal movement models for migratory individuals and groups. Methods in Ecology and Evolution, 2018, 9, 1692-1705.                                               | 5.2 | 13        |
| 33 | Estimating abundance of an open population with an N â€mixture model using auxiliary data on animal movements. Ecological Applications, 2018, 28, 816-825.       | 3.8 | 14        |
| 34 | Predicting effects of largeâ€scale reforestation on native and exotic birds. Diversity and Distributions, 2018, 24, 811-819.                                     | 4.1 | 10        |
| 35 | Monitoring dynamic spatioâ€ŧemporal ecological processes optimally. Ecology, 2018, 99, 524-535.                                                                  | 3.2 | 30        |
| 36 | Process convolution approaches for modeling interacting trajectories. Environmetrics, 2018, 29, e2487.                                                           | 1.4 | 16        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the<br>National Academy of Sciences of the United States of America, 2018, 115, 1424-1432.                                   | 7.1 | 400       |
| 38 | Largeâ€scale movement behavior in a reintroduced predator population. Ecography, 2018, 41, 126-139.                                                                                                                           | 4.5 | 13        |
| 39 | Spatial autoregressive models for statistical inference from ecological data. Ecological Monographs, 2018, 88, 36-59.                                                                                                         | 5.4 | 128       |
| 40 | Time-varying predatory behavior is primary predictor of fine-scale movement of wildland-urban cougars. Movement Ecology, 2018, 6, 22.                                                                                         | 2.8 | 14        |
| 41 | Accounting for location uncertainty in azimuthal telemetry data improves ecological inference.<br>Movement Ecology, 2018, 6, 14.                                                                                              | 2.8 | 15        |
| 42 | A guide to Bayesian model checking for ecologists. Ecological Monographs, 2018, 88, 526-542.                                                                                                                                  | 5.4 | 164       |
| 43 | On the relationship between conditional (CAR) and simultaneous (SAR) autoregressive models. Spatial Statistics, 2018, 25, 68-85.                                                                                              | 1.9 | 40        |
| 44 | Inferring infection hazard in wildlife populations by linking data across individual and population scales. Ecology Letters, 2017, 20, 275-292.                                                                               | 6.4 | 50        |
| 45 | The Bayesian Group Lasso for Confounded Spatial Data. Journal of Agricultural, Biological, and<br>Environmental Statistics, 2017, 22, 42-59.                                                                                  | 1.4 | 27        |
| 46 | Nonnative Trout Invasions Combined with Climate Change Threaten Persistence of Isolated Cutthroat<br>Trout Populations in the Southern Rocky Mountains. North American Journal of Fisheries<br>Management, 2017, 37, 314-325. | 1.0 | 22        |
| 47 | Safari Science: assessing the reliability of citizen science data for wildlife surveys. Journal of Applied<br>Ecology, 2017, 54, 2053-2062.                                                                                   | 4.0 | 34        |
| 48 | Dynamic spatio-temporal models for spatial data. Spatial Statistics, 2017, 20, 206-220.                                                                                                                                       | 1.9 | 28        |
| 49 | Bias correction of bounded location errors in presenceâ€only data. Methods in Ecology and Evolution, 2017, 8, 1566-1573.                                                                                                      | 5.2 | 18        |
| 50 | Basis Function Models for Animal Movement. Journal of the American Statistical Association, 2017, 112, 578-589.                                                                                                               | 3.1 | 23        |
| 51 | Estimating occupancy and abundance using aerial images with imperfect detection. Methods in Ecology and Evolution, 2017, 8, 1679-1689.                                                                                        | 5.2 | 30        |
| 52 | When mechanism matters: Bayesian forecasting using models of ecological diffusion. Ecology Letters, 2017, 20, 640-650.                                                                                                        | 6.4 | 57        |
| 53 | The basis function approach for modeling autocorrelation in ecological data. Ecology, 2017, 98, 632-646.                                                                                                                      | 3.2 | 87        |
| 54 | Reflected Stochastic Differential Equation Models for Constrained Animal Movement. Journal of<br>Agricultural, Biological, and Environmental Statistics, 2017, 22, 353-372.                                                   | 1.4 | 13        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A modelâ€based approach to wildland fire reconstruction using sediment charcoal records.<br>Environmetrics, 2017, 28, e2450.                                                                            | 1.4 | 9         |
| 56 | Imputation Approaches for Animal Movement Modeling. Journal of Agricultural, Biological, and Environmental Statistics, 2017, 22, 335-352.                                                               | 1.4 | 29        |
| 57 | Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features. Ecology, 2017, 98, 12-20.                                                                                  | 3.2 | 4         |
| 58 | Do we need demographic data to forecast plant population dynamics?. Methods in Ecology and Evolution, 2017, 8, 541-551.                                                                                 | 5.2 | 32        |
| 59 | An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics. Ecology, 2017, 98, 328-336.                                                                        | 3.2 | 43        |
| 60 | Guest Editor's Introduction to the Special Issue on "Animal Movement Modeling― Journal of<br>Agricultural, Biological, and Environmental Statistics, 2017, 22, 224-231.                                 | 1.4 | 5         |
| 61 | Hierarchical Spatial Models. , 2017, , 837-846.                                                                                                                                                         |     | 3         |
| 62 | Inferring invasive species abundance using removal data from management actions. Ecological Applications, 2016, 26, 2339-2346.                                                                          | 3.8 | 36        |
| 63 | Hierarchical Species Distribution Models. Current Landscape Ecology Reports, 2016, 1, 87-97.                                                                                                            | 2.2 | 62        |
| 64 | Model selection and assessment for multiâ€species occupancy models. Ecology, 2016, 97, 1759-1770.                                                                                                       | 3.2 | 97        |
| 65 | Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere, 2016, 7, e01525.                                                                                         | 2.2 | 35        |
| 66 | Dynamic social networks based on movement. Annals of Applied Statistics, 2016, 10, .                                                                                                                    | 1.1 | 30        |
| 67 | Assessing potential health risks to fish and humans using mercury concentrations in inland fish from across western Canada and the United States. Science of the Total Environment, 2016, 571, 342-354. | 8.0 | 27        |
| 68 | Dynamic occupancy models for explicit colonization processes. Ecology, 2016, 97, 194-204.                                                                                                               | 3.2 | 55        |
| 69 | Models for Ecological Models: Ocean Primary Productivity. Chance, 2016, 29, 23-30.                                                                                                                      | 0.2 | 0         |
| 70 | When can the cause of a population decline be determined?. Ecology Letters, 2016, 19, 1353-1362.                                                                                                        | 6.4 | 24        |
| 71 | Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias. Methods in Ecology and Evolution, 2016, 7, 900-909.                | 5.2 | 53        |
| 72 | Movement reveals scale dependence in habitat selection of a large ungulate. Ecological Applications, 2016, 26, 2746-2757.                                                                               | 3.8 | 24        |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models.<br>Environmetrics, 2016, 27, 42-54.                                          | 1.4 | 11        |
| 74 | Hierarchical animal movement models for populationâ€level inference. Environmetrics, 2016, 27, 322-333.                                                                        | 1.4 | 52        |
| 75 | A functional model for characterizing longâ€distance movement behaviour. Methods in Ecology and Evolution, 2016, 7, 264-273.                                                   | 5.2 | 35        |
| 76 | Combining statistical inference and decisions in ecology. Ecological Applications, 2016, 26, 1930-1942.                                                                        | 3.8 | 38        |
| 77 | Continuous-time discrete-space models for animal movement. Annals of Applied Statistics, 2015, 9, .                                                                            | 1.1 | 60        |
| 78 | Hierarchical Spatial Models. , 2015, , 1-10.                                                                                                                                   |     | 0         |
| 79 | Optimal population prediction of sandhill crane recruitment based on climateâ€mediated habitat<br>limitations. Journal of Animal Ecology, 2015, 84, 1299-1310.                 | 2.8 | 31        |
| 80 | Accounting for imperfect detection in Hill numbers for biodiversity studies. Methods in Ecology and Evolution, 2015, 6, 99-108.                                                | 5.2 | 28        |
| 81 | Multi-Fraction Bayesian Sediment Transport Model. Journal of Marine Science and Engineering, 2015, 3, 1066-1092.                                                               | 2.6 | 5         |
| 82 | Forecasting the Effects of Fertility Control on Overabundant Ungulates: White-Tailed Deer in the National Capital Region. PLoS ONE, 2015, 10, e0143122.                        | 2.5 | 24        |
| 83 | Stateâ€space modeling to support management of brucellosis in the Yellowstone bison population.<br>Ecological Monographs, 2015, 85, 525-556.                                   | 5.4 | 46        |
| 84 | On the existence of maximum likelihood estimates for presenceâ€only data. Methods in Ecology and Evolution, 2015, 6, 648-655.                                                  | 5.2 | 25        |
| 85 | Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification. Environmetrics, 2015, 26, 243-254.                 | 1.4 | 108       |
| 86 | Animal movement constraints improve resource selection inference in the presence of telemetry error. Ecology, 2015, 96, 2590-2597.                                             | 3.2 | 47        |
| 87 | A guide to Bayesian model selection for ecologists. Ecological Monographs, 2015, 85, 3-28.                                                                                     | 5.4 | 589       |
| 88 | Using spatiotemporal statistical models to estimate animal abundance and infer ecological dynamics from survey counts. Ecological Monographs, 2015, 85, 235-252.               | 5.4 | 40        |
| 89 | When to be discrete: the importance of time formulation in understanding animal movement.<br>Movement Ecology, 2014, 2, 21.                                                    | 2.8 | 73        |
| 90 | Homogenization, sex, and differential motility predict spread of chronic wasting disease in mule deer<br>in southern Utah. Journal of Mathematical Biology, 2014, 69, 369-399. | 1.9 | 23        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Temporal variation and scale in movement-based resource selection functions. Statistical<br>Methodology, 2014, 17, 82-98.                                                                                             | 0.5 | 33        |
| 92  | A Bayesian hierarchical model for forecasting intermountain snow dynamics. Environmetrics, 2014, 25, 324-340.                                                                                                         | 1.4 | 0         |
| 93  | An integrated modeling approach to estimating Gunnison sageâ€grouse population dynamics: combining index and demographic data. Ecology and Evolution, 2014, 4, 4247-4257.                                             | 1.9 | 26        |
| 94  | Guest Editor's Introduction to the Special Issue on "Modern Dimension Reduction Methods for Big<br>Data Problems in Ecology― Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18,<br>271-273. | 1.4 | 1         |
| 95  | Computationally Efficient Statistical Differential Equation Modeling Using Homogenization. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 405-428.                                      | 1.4 | 23        |
| 96  | Evaluating breeding and metamorph occupancy and vernal pool management effects for wood frogs using a hierarchical model. Journal of Applied Ecology, 2013, 50, 1116-1123.                                            | 4.0 | 33        |
| 97  | Estimating animal resource selection from telemetry data using point process models. Journal of Animal Ecology, 2013, 82, 1155-1164.                                                                                  | 2.8 | 75        |
| 98  | Spatial occupancy models for large data sets. Ecology, 2013, 94, 801-808.                                                                                                                                             | 3.2 | 135       |
| 99  | Reconciling resource utilization and resource selection functions. Journal of Animal Ecology, 2013, 82, 1146-1154.                                                                                                    | 2.8 | 50        |
| 100 | Circuit Theory and Model-Based Inference for Landscape Connectivity. Journal of the American Statistical Association, 2013, 108, 22-33.                                                                               | 3.1 | 69        |
| 101 | Practical guidance on characterizing availability in resource selection functions under a use–availability design. Ecology, 2013, 94, 1456-1463.                                                                      | 3.2 | 278       |
| 102 | Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin. Global Change Biology, 2013, 19, 1383-1398.                                           | 9.5 | 65        |
| 103 | At–Sea Behavior Varies with Lunar Phase in a Nocturnal Pelagic Seabird, the Swallow-Tailed Gull. PLoS<br>ONE, 2013, 8, e56889.                                                                                        | 2.5 | 24        |
| 104 | Comments on: Inference for Size Demography From Point Process Data Using Integral Projection<br>Models. Journal of Agricultural, Biological, and Environmental Statistics, 2012, 17, 690-692.                         | 1.4 | 0         |
| 105 | The influence of external subsidies on diet, growth and Hg concentrations of freshwater sport fish:<br>implications for management and fish consumption advisories. Ecotoxicology, 2012, 21, 1878-1888.               | 2.4 | 18        |
| 106 | An Accessible Method for Implementing Hierarchical Models with Spatio-Temporal Abundance Data.<br>PLoS ONE, 2012, 7, e49395.                                                                                          | 2.5 | 23        |
| 107 | Optimal spatio-temporal monitoring designs for characterizing population trends. , 2012, , 443-459.                                                                                                                   |     | 9         |
| 109 | Reconciling multiple data sources to improve accuracy of large-scale prediction of forest disease                                                                                                                     |     | 36        |

<sup>108</sup> incidence. , 2011, 21, 1173-1188.

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.<br>Ecology, 2011, 92, 1887-1894.                                                            | 3.2 | 253       |
| 110 | Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecology Letters, 2011, 14, 1108-1116.                                                               | 6.4 | 143       |
| 111 | Assessing First-Order Emulator Inference for Physical Parameters in Nonlinear Mechanistic Models.<br>Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16, 475-494. | 1.4 | 42        |
| 112 | Homogenization of Large-Scale Movement Models inÂEcology. Bulletin of Mathematical Biology, 2011,<br>73, 2088-2108.                                                                        | 1.9 | 60        |
| 113 | Climate influences the demography of three dominant sagebrush steppe plants. Ecology, 2011, 92, 75-85.                                                                                     | 3.2 | 98        |
| 114 | Velocity-Based Movement Modeling for Individual and Population Level Inference. PLoS ONE, 2011, 6, e22795.                                                                                 | 2.5 | 49        |
| 115 | Prey-mediated avoidance of an intraguild predator by its intraguild prey. Oecologia, 2010, 164, 921-929.                                                                                   | 2.0 | 24        |
| 116 | Agent-Based Inference for Animal Movement and Selection. Journal of Agricultural, Biological, and<br>Environmental Statistics, 2010, 15, 523-538.                                          | 1.4 | 60        |
| 117 | A general science-based framework for dynamical spatio-temporal models. Test, 2010, 19, 417-451.                                                                                           | 1.1 | 147       |
| 118 | Rejoinder on: A general science-based framework forÂdynamical spatio-temporal models. Test, 2010, 19,<br>466-468.                                                                          | 1.1 | 2         |
| 119 | Summer spatial patterning of chukars in relation to free water in western Utah. Landscape Ecology, 2010, 25, 135-145.                                                                      | 4.2 | 8         |
| 120 | Assessing North American influenza dynamics with a statistical SIRS model. Spatial and Spatio-temporal Epidemiology, 2010, 1, 177-185.                                                     | 1.7 | 40        |
| 121 | Accounting for Individuals, Uncertainty, and Multiscale Clustering in Core Area Estimation. Journal of Wildlife Management, 2010, 74, 1343-1352.                                           | 1.8 | 23        |
| 122 | Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance. Journal of Applied Ecology, 2010, 47, 401-409.                                                | 4.0 | 20        |
| 123 | A Bayesian model for predicting local El Niño events using tree ring widths and cellulose<br><i>δ</i> <sup>18</sup> O. Journal of Geophysical Research, 2010, 115, .                       | 3.3 | 1         |
| 124 | Statistical Agent-Based Models for Discrete Spatio-Temporal Systems. Journal of the American Statistical Association, 2010, 105, 236-248.                                                  | 3.1 | 65        |
| 125 | Accounting for Individuals, Uncertainty, and Multiscale Clustering in Core Area Estimation. Journal of Wildlife Management, 2010, 74, 1343-1352.                                           | 1.8 | 13        |
| 126 | Models for Bounded Systems with Continuous Dynamics. Biometrics, 2009, 65, 850-856.                                                                                                        | 1.4 | 15        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Optimal spatioâ€ŧemporal hybrid sampling designs for ecological monitoring. Journal of Vegetation<br>Science, 2009, 20, 639-649.                                                                      | 2.2 | 28        |
| 128 | A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian Collared-Dove. Environmental and Ecological Statistics, 2008, 15, 59-70. | 3.5 | 125       |
| 129 | Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions. Biometrics, 2007, 63, 558-567.                                                                                                | 1.4 | 78        |
| 130 | Mapping pre-European settlement vegetation at fine resolutions using a hierarchical Bayesian model and GIS. Plant Ecology, 2007, 191, 85-94.                                                          | 1.6 | 21        |
| 131 | Shifts in the spatio-temporal growth dynamics of shortleaf pine. Environmental and Ecological Statistics, 2007, 14, 207-227.                                                                          | 3.5 | 20        |
| 132 | Title is missing!. Landscape Ecology, 2003, 18, 487-502.                                                                                                                                              | 4.2 | 62        |
| 133 | Bringing Bayesian Models to Life. , 0, , .                                                                                                                                                            |     | 40        |
| 134 | Animal Movement. , 0, , .                                                                                                                                                                             |     | 195       |
| 135 | Improving Wildlife Population Inference Using Aerial Imagery and Entity Resolution. Journal of Agricultural, Biological, and Environmental Statistics, 0, , 1.                                        | 1.4 | 1         |