Milon Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3168119/publications.pdf

Version: 2024-02-01

		567281	752698
19	1,002 citations	15	20
papers	citations	h-index	g-index
23	23	23	1462
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	UCHL1 as a novel target in breast cancer: emerging insights from cell and chemical biology. British Journal of Cancer, 2022, 126, 24-33.	6.4	29
2	Photochemical Probe Identification of a Smallâ€Molecule Inhibitor Binding Site in Hedgehog Acyltransferase (HHAT)**. Angewandte Chemie, 2021, 133, 13654-13659.	2.0	0
3	Photochemical Probe Identification of a Smallâ€Molecule Inhibitor Binding Site in Hedgehog Acyltransferase (HHAT)**. Angewandte Chemie - International Edition, 2021, 60, 13542-13547.	13.8	18
4	Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nature Communications, 2021, 12, 7036.	12.8	33
5	Discovery of a Potent and Selective Covalent Inhibitor and Activity-Based Probe for the Deubiquitylating Enzyme UCHL1, with Antifibrotic Activity. Journal of the American Chemical Society, 2020, 142, 12020-12026.	13.7	51
6	Recent Developments in Cell Permeable Deubiquitinating Enzyme Activity-Based Probes. Frontiers in Chemistry, 2019, 7, 876.	3.6	25
7	Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature, 2019, 576, 452-458.	27.8	231
8	A Peptidomimetic Antibiotic Interacts with the Periplasmic Domain of LptD from <i>Pseudomonas aeruginosa</i> . ACS Chemical Biology, 2018, 13, 666-675.	3.4	68
9	Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in <i>Escherichia coli</i> . Science Advances, 2018, 4, eaau2634.	10.3	109
10	Design and Synthesis of Bioisosteres of Acylhydrazones as Stable Inhibitors of the Aspartic Protease Endothiapepsin. ChemMedChem, 2018, 13, 2266-2270.	3.2	7
11	Fragmentâ€Based Drug Design Facilitated by Proteinâ€Templated Click Chemistry: Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. Chemistry - A European Journal, 2016, 22, 14826-14830.	3.3	16
12	Furoates and thenoates inhibit pyruvate dehydrogenase kinase 2 allosterically by binding to its pyruvate regulatory site. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 170-175.	5.2	4
13	Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragmentâ€Based Drug Design Facilitated by Dynamic Combinatorial Chemistry. Angewandte Chemie - International Edition, 2016, 55, 9422-9426.	13.8	55
14	Fragmentverknüpfung und â€optimierung von Hemmstoffen der Aspartylprotease Endothiapepsin: Fragmentbasiertes Wirkstoffdesign beschleunigt durch dynamische kombinatorische Chemie. Angewandte Chemie, 2016, 128, 9569-9574.	2.0	21
15	Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. International Journal of Molecular Sciences, 2015, 16, 19184-19194.	4.1	13
16	Fragment growing exploiting dynamic combinatorial chemistry of inhibitors of the aspartic protease endothiapepsin. MedChemComm, 2015, 6, 1267-1271.	3.4	19
17	Fighting Malaria: Structure-Guided Discovery of Nonpeptidomimetic Plasmepsin Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 5151-5163.	6.4	24
18	Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets. Chemical Society Reviews, 2015, 44, 2455-2488.	38.1	176

#	Article	IF	CITATIONS
19	Structureâ€Based Design of Inhibitors of the Aspartic Protease Endothiapepsin by Exploiting Dynamic Combinatorial Chemistry. Angewandte Chemie - International Edition, 2014, 53, 3259-3263.	13.8	71