Antoine Kahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3167465/publications.pdf

Version: 2024-02-01

266 papers 30,839 citations

98 h-index 170 g-index

275 all docs

275 docs citations

275 times ranked

26625 citing authors

#	Article	IF	CITATIONS
1	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	11.1	13
2	Powerful Organic Molecular Oxidants and Reductants Enable Ambipolar Injection in a Large-Gap Organic Homojunction Diode. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2381-2389.	4.0	5
3	Nonradiative Recombination via Chargeâ€Transferâ€Exciton to Polaron Energy Transfer Limits Photocurrent in Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	5
4	Electrochemically n-Doped CsPbBr ₃ Nanocrystal Thin Films. ACS Energy Letters, 2022, 7, 211-216.	8.8	8
5	Design of UV-Absorbing Donor Molecules for Nearly Imperceptible Organic Solar Cells. ACS Energy Letters, 2022, 7, 180-188.	8.8	14
6	p-Type molecular doping by charge transfer in halide perovskite. Materials Advances, 2021, 2, 2956-2965.	2.6	17
7	Coronene derivatives for transparent organic photovoltaics through inverse materials design. Journal of Materials Chemistry C, 2021, 9, 1310-1317.	2.7	12
8	Direct Probing of Gap States and Their Passivation in Halide Perovskites by High-Sensitivity, Variable Energy Ultraviolet Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 5217-5225.	1.5	12
9	Adduct-based p-doping of organic semiconductors. Nature Materials, 2021, 20, 1248-1254.	13.3	40
10	Molecular dopants: Tools to control the electronic structure of metal halide perovskite interfaces. Applied Physics Reviews, 2021, 8, .	5.5	8
11	Photocurrent deviation from linearity in an organic photodetector due to limited hole transport layer conductivity. Organic Electronics, 2020, 76, 105450.	1.4	7
12	Elucidating the Role of a Tetrafluoroborateâ∈Based Ionic Liquid at the nâ€Type Oxide/Perovskite Interface. Advanced Energy Materials, 2020, 10, 1903231.	10.2	81
13	Gap States in Methylammonium Lead Halides: The Link to Dimethylsulfoxide?. Advanced Materials, 2020, 32, e2003482.	11.1	21
14	The properties, photovoltaic performance and stability of visible to near-IR all inorganic perovskites. Materials Advances, 2020, 1, 1920-1929.	2.6	5
15	nâ€Doping of a Lowâ€Electronâ€Affinity Polymer Used as an Electronâ€Transport Layer in Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2000328.	7.8	22
16	Structural and Electronic Impact of an Asymmetric Organic Ligand in Diammonium Lead Iodide Perovskites. Advanced Energy Materials, 2020, 10, 1903900.	10.2	17
17	Ultraviolet Photoemission Spectroscopy and Kelvin Probe Measurements on Metal Halide Perovskites: Advantages and Pitfalls. Advanced Energy Materials, 2020, 10, 1903252.	10.2	33
18	Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy and Environmental Science, 2019, 12, 3063-3073.	15.6	111

#	Article	IF	Citations
19	Sensitization of silicon by singlet exciton fission in tetracene. Nature, 2019, 571, 90-94.	13.7	221
20	Quantum Well Energetics of an <i>n</i> = 2 Ruddlesden–Popper Phase Perovskite. Advanced Energy Materials, 2019, 9, 1901005.	10.2	25
21	Molecular-Reductant-Induced Control of a Graphene–Organic Interface for Electron Injection. Chemistry of Materials, 2019, 31, 6624-6632.	3.2	15
22	Complexities of Contact Potential Difference Measurements on Metal Halide Perovskite Surfaces. Journal of Physical Chemistry Letters, 2019, 10, 890-896.	2.1	24
23	Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	23.0	404
24	Highâ€Voltage Photogeneration Exclusively via Aggregationâ€Induced Triplet States in a Heavyâ€Atomâ€Free Nonplanar Organic Semiconductor. Advanced Energy Materials, 2019, 9, 1901649.	10.2	4
25	What Limits the Open-Circuit Voltage of Bromide Perovskite-Based Solar Cells?. ACS Energy Letters, 2019, 4, 1-7.	8.8	71
26	The formation of polymer-dopant aggregates as a possible origin of limited doping efficiency at high dopant concentration. Organic Electronics, 2018, 53, 135-140.	1.4	38
27	Characterization of the Valence and Conduction Band Levels of $\langle i \rangle n \langle i \rangle = 1$ 2D Perovskites: A Combined Experimental and Theoretical Investigation. Advanced Energy Materials, 2018, 8, 1703468.	10.2	76
28	Impact of unintentional oxygen doping on organic photodetectors. Organic Electronics, 2018, 54, 64-71.	1.4	10
29	Investigation of the High Electron Affinity Molecular Dopant F6â€TCNNQ for Holeâ€Transport Materials. Advanced Functional Materials, 2018, 28, 1703780.	7.8	56
30	Ultrasensitive Heterojunctions of Graphene and 2D Perovskites Reveal Spontaneous Iodide Loss. Joule, 2018, 2, 2133-2144.	11.7	39
31	Variable charge transfer state energies at nanostructured pentacene/C60 interfaces. Applied Physics Letters, 2018, 112, 213302.	1.5	12
32	Toward a better understanding of the doping mechanism involved in Mo(tfd-COCF3)3 doped PBDTTT-c. Journal of Applied Physics, 2018, 123, 225501.	1.1	5
33	Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system. Journal of Applied Physics, 2017, 121, .	1.1	93
34	Mixed-Halide Perovskites with Stabilized Bandgaps. Nano Letters, 2017, 17, 6863-6869.	4.5	165
35	Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nature Materials, 2017, 16, 1209-1215.	13.3	139
36	Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nature Energy, 2017, 2, .	19.8	195

#	Article	IF	CITATIONS
37	Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimentalâ€"Theoretical Study. Journal of Physical Chemistry Letters, 2016, 7, 2722-2729.	2.1	333
38	P-doped organic semiconductor: Potential replacement for PEDOT:PSS in organic photodetectors. Applied Physics Letters, 2016, 109, .	1.5	21
39	Impact of a Low Concentration of Dopants on the Distribution of Gap States in a Molecular Semiconductor. Chemistry of Materials, 2016, 28, 2677-2684.	3.2	29
40	Experimental Characterization of Interfaces of Relevance to Organic Electronics. Materials and Energy, 2016, , 159-191.	2.5	2
41	Morphological Tuning of the Energetics in Singlet Fission Organic Solar Cells. Advanced Functional Materials, 2016, 26, 6489-6494.	7.8	24
42	High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic–Inorganic Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31491-31499.	4.0	151
43	Electronically Passivated Holeâ€Blocking Titanium Dioxide/Silicon Heterojunction for Hybrid Silicon Photovoltaics. Advanced Materials Interfaces, 2016, 3, 1600026.	1.9	17
44	Determination of Energy Level Alignment within an Energy Cascade Organic Solar Cell. Chemistry of Materials, 2016, 28, 794-801.	3.2	54
45	Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films. ACS Nano, 2016, 10, 3302-3311.	7.3	118
46	Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9262-9267.	4.0	22
47	Contorted Hexabenzocoronenes with Extended Heterocyclic Moieties Improve Visible-Light Absorption and Performance in Organic Solar Cells. Chemistry of Materials, 2016, 28, 673-681.	3.2	34
48	Fermi level, work function and vacuum level. Materials Horizons, 2016, 3, 7-10.	6.4	615
49	Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Advanced Materials, 2015, 27, 5102-5112.	11.1	372
50	Dopant controlled trap-filling and conductivity enhancement in an electron-transport polymer. Applied Physics Letters, 2015, 106, .	1.5	57
51	Impact of Blend Morphology on Interface State Recombination in Bulk Heterojunction Organic Solar Cells. Advanced Functional Materials, 2015, 25, 1090-1101.	7.8	29
52	Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell. Applied Physics Letters, 2015, 106, .	1.5	121
53	Investigation of p-dopant diffusion in polymer films and bulk heterojunctions: Stable spatially-confined doping for all-solution processed solar cells. Organic Electronics, 2015, 23, 151-157.	1.4	42
54	Halogenation of a Nonplanar Molecular Semiconductor to Tune Energy Levels and Bandgaps for Electron Transport. Chemistry of Materials, 2015, 27, 1892-1900.	3.2	55

#	Article	IF	Citations
55	Quantifying the Extent of Contact Doping at the Interface between High Work Function Electrical Contacts and Poly(3-hexylthiophene) (P3HT). Journal of Physical Chemistry Letters, 2015, 6, 1303-1309.	2.1	40
56	Electronic Level Alignment in Inverted Organometal Perovskite Solar Cells. Advanced Materials Interfaces, 2015, 2, 1400532.	1.9	174
57	Low-Temperature Synthesis of a TiO ₂ /Si Heterojunction. Journal of the American Chemical Society, 2015, 137, 14842-14845.	6.6	70
58	Stability of inverted organic solar cells with ZnO contact layers deposited from precursor solutions. Energy and Environmental Science, 2015, 8, 592-601.	15.6	103
59	NiO _{<i>X</i>} /MoO ₃ Bi‣ayers as Efficient Hole Extraction Contacts in Organic Solar Cells. Advanced Functional Materials, 2014, 24, 701-706.	7.8	65
60	Molecular doping and tuning threshold voltage in 6,13-bis (triis opropyl sily lethynyl) pentacene/polymer blend transistors. Applied Physics Letters, 2014, 105 , .	1.5	31
61	Impact of Functionalized Polystyrenes as the Electron Injection Layer on Gold and Aluminum Surfaces: A Combined Theoretical and Experimental Study. Israel Journal of Chemistry, 2014, 54, 779-788.	1.0	2
62	Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy and Environmental Science, 2014, 7, 1377.	15.6	624
63	Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films. Journal of Physical Chemistry Letters, 2014, 5, 1374-1379.	2.1	96
64	Impact of Hole Transport Layer Surface Properties on the Morphology of a Polymerâ€Fullerene Bulk Heterojunction. Advanced Energy Materials, 2014, 4, 1301879.	10.2	28
65	Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazoleâ€based Organic Solar Cells. Advanced Functional Materials, 2014, 24, 4671-4680.	7.8	76
66	Improved Performance in Bulk Heterojunction Organic Solar Cells with a Solâ€Gel MgZnO Electronâ€Collecting Layer. Advanced Energy Materials, 2014, 4, 1400073.	10.2	22
67	Enhanced Chargeâ€Carrier Injection and Collection Via Lamination of Doped Polymer Layers pâ€Doped with a Solutionâ€Processible Molybdenum Complex. Advanced Functional Materials, 2014, 24, 2197-2204.	7.8	77
68	Tailoring Electronâ€Transfer Barriers for Zinc Oxide/C ₆₀ Fullerene Interfaces. Advanced Functional Materials, 2014, 24, 7381-7389.	7.8	54
69	Interface dipole engineering at buried organic–organic semiconductor heterojunctions. Organic Electronics, 2014, 15, 2360-2366.	1.4	15
70	Photoinduced Hole Transfer Becomes Suppressed with Diminished Driving Force in Polymerâ€Fullerene Solar Cells While Electron Transfer Remains Active. Advanced Functional Materials, 2013, 23, 1238-1249.	7.8	101
71	Mechanistic Study on the Solution-Phase n-Doping of 1,3-Dimethyl-2-aryl-2,3-dihydro-1 <i>H</i> benzoimidazole Derivatives. Journal of the American Chemical Society, 2013, 135, 15018-15025.	6.6	202
72	The effect of structural order on solar cell parameters, as illustrated in a SiC-organic junction model. Energy and Environmental Science, 2013, 6, 3272.	15.6	8

#	Article	IF	CITATIONS
73	Gap states in Pentacene Thin Film Induced by Inert Gas Exposure. Physical Review Letters, 2013, 110, 267602.	2.9	114
74	Electronic structure and carrier transport at laminated polymer homojunctions. Organic Electronics, 2013, 14, 149-155.	1.4	15
75	Effect of Doping Density on the Charge Rearrangement and Interface Dipole at the Molecule–Silicon Interface. Journal of Physical Chemistry C, 2013, 117, 22422-22427.	1.5	13
76	Hole-blocking crystalline-silicon/titanium-oxide heterojunction with very low interface recombination velocity. , $2013, \ldots$		22
77	(Invited) Wide Bandgap Heterojunctions on Crystalline Silicon. ECS Transactions, 2013, 58, 97-105.	0.3	2
78	Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Applied Physics Letters, 2013, 102, .	1.5	183
79	Nature of the Interfaces Between Stoichiometric and Underâ€Stoichiometric MoO ₃ and 4,4′â€∢i>N, <i>N</i> ,62â€dicarbazoleâ€biphenyl: A Combined Theoretical and Experimental Study. Advance Functional Materials, 2013, 23, 6091-6099.	ce d. 8	26
80	Correlation between interface energetics and open circuit voltage in organic photovoltaic cells. Applied Physics Letters, 2012, 101, 233301.	1.5	88
81	Polyvinylpyrrolidone-modified indium tin oxide as an electron-collecting electrode for inverted polymer solar cells. Applied Physics Letters, 2012, 101, 073303.	1.5	26
82	Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level. Physical Review B, 2012, 85, .	1.1	51
83	Solution doping of organic semiconductors using air-stable n-dopants. Applied Physics Letters, 2012, 100, .	1.5	86
84	Passivation of trap states in unpurified and purified C60 and the influence on organic field-effect transistor performance. Applied Physics Letters, 2012, 101, .	1.5	65
85	Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics. Journal of Materials Chemistry, 2012, 22, 3249.	6.7	147
86	Ultralow Doping in Organic Semiconductors: Evidence of Trap Filling. Physical Review Letters, 2012, 109, 176601.	2.9	231
87	A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science, 2012, 336, 327-332.	6.0	1,878
88	Oriented Growth of Al ₂ O ₃ :ZnO Nanolaminates for Use as Electronâ€Selective Electrodes in Inverted Polymer Solar Cells. Advanced Functional Materials, 2012, 22, 1531-1538.	7.8	47
89	Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. Advanced Materials, 2012, 24, 5408-5427.	11.1	1,035
90	Photovoltaic efficiency limits and material disorder. Energy and Environmental Science, 2012, 5, 6022.	15.6	166

#	Article	IF	CITATIONS
91	Energy level alignment in PCDTBT:PC70BM solar cells: Solution processed NiOx for improved hole collection and efficiency. Organic Electronics, 2012, 13, 744-749.	1.4	135
92	nâ€Doping of Organic Electronic Materials using Airâ€Stable Organometallics. Advanced Materials, 2012, 24, 699-703.	11.1	163
93	Device Characteristics of Bulk-Heterojunction Polymer Solar Cells are Independent of Interfacial Segregation of Active Layers. Chemistry of Materials, 2011, 23, 2020-2023.	3.2	71
94	Annealing Sequence Dependent Open-Circuit Voltage of Inverted Polymer Solar Cells Attributable to Interfacial Chemical Reaction between Top Electrodes and Photoactive Layers. Langmuir, 2011, 27, 11265-11271.	1.6	14
95	Electronic structure of the poly(3-hexylthiophene):indene-C60 bisadduct bulk heterojunction. Journal of Applied Physics, 2011, 110, 043719.	1.1	44
96	Electronic structure of Vanadium pentoxide: An efficient hole injector for organic electronic materials. Journal of Applied Physics, 2011, 110, .	1.1	224
97	Evidence for near-Surface NiOOH Species in Solution-Processed NiO _{<i>x</i>} Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chemistry of Materials, 2011, 23, 4988-5000.	3.2	343
98	Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability. Journal of Applied Physics, $2011,110,110$, .	1.1	19
99	Modular construction of P3HT/PCBM planar-heterojunction solar cells by lamination allows elucidation of processing–structure–function relationships. Organic Electronics, 2011, 12, 1963-1972.	1.4	18
100	Filled and empty states of alkanethiol monolayer on Au (111): Fermi level asymmetry and implications for electron transport. Chemical Physics Letters, 2011, 511, 344-347.	1.2	46
101	Inverted Organic Solar Cells with Sol–Gel Processed High Workâ€Function Vanadium Oxide Holeâ€Extraction Layers. Advanced Functional Materials, 2011, 21, 4776-4783.	7.8	213
102	MoO ₃ Films Spin oated from a Nanoparticle Suspension for Efficient Holeâ€Injection in Organic Electronics. Advanced Materials, 2011, 23, 70-73.	11.1	317
103	Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiO _x Interlayers. Advanced Energy Materials, 2011, 1, 813-820.	10.2	299
104	Electronic structure and band alignment of 9,10-phenanthrenequinone passivated silicon surfaces. Surface Science, 2011, 605, 1308-1312.	0.8	16
105	Silicon surface passivation by an organic overlayer of 9,10-phenanthrenequinone. Applied Physics Letters, 2010, 96, 222109.	1.5	40
106	The Role of Transition Metal Oxides in Chargeâ€Generation Layers for Stacked Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2010, 20, 1762-1766.	7.8	150
107	The Influence of Film Morphology in Highâ∈Mobility Smallâ∈Molecule:Polymer Blend Organic Transistors. Advanced Functional Materials, 2010, 20, 2330-2337.	7.8	120
108	Molecules on Si: Electronics with Chemistry. Advanced Materials, 2010, 22, 140-159.	11.1	207

#	Article	IF	CITATIONS
109	Modification of gold source and drain electrodes by self-assembled monolayer in staggered n- and p-channel organic thin film transistors. Organic Electronics, 2010, 11, 227-237.	1.4	108
110	Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend. Organic Electronics, 2010, 11, 1779-1785.	1.4	211
111	Remote doping of a pentacene transistor: Control of charge transfer by molecular-level engineering. Applied Physics Letters, 2010, 97, .	1.5	36
112	The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Applied Physics Letters, 2010, 96, .	1.5	103
113	Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism. Applied Physics Letters, 2010, 96, .	1.5	171
114	Surface and interface states of gallium-polar versus nitrogen-polar GaN: Impact of thin organic semiconductor overlayers. Journal of Applied Physics, 2010, 107, .	1.1	16
115	Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces. MRS Bulletin, 2010, 35, 443-448.	1.7	40
116	Molecular-scale properties of MoO3-doped pentacene. Physical Review B, 2010, 82, .	1.1	26
117	A Molybdenum Dithiolene Complex as <i>p</i> -Dopant for Hole-Transport Materials: A Multitechnique Experimental and Theoretical Investigation. Chemistry of Materials, 2010, 22, 524-531.	3.2	65
118	Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces. Applied Physics Letters, $2010, 96, .$	1.5	175
119	Hg/Molecular Monolayerâ^'Si Junctions: Electrical Interplay between Monolayer Properties and Semiconductor Doping Density. Journal of Physical Chemistry C, 2010, 114, 10270-10279.	1.5	56
120	Phosphine Oxide Derivatives as Hosts for Blue Phosphors: A Joint Theoretical and Experimental Study of Their Electronic Structure. Chemistry of Materials, 2010, 22, 247-254.	3.2	95
121	Electronic band structure and ensemble effect in monolayers of linear molecules investigated by photoelectron spectroscopy. Physical Review B, 2009, 79, .	1.1	16
122	Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Applied Physics Letters, 2009, 95, .	1.5	615
123	Isolated molecular dopants in pentacene observed by scanning tunneling microscopy. Physical Review B, 2009, 80, .	1.1	38
124	Influence of chemical doping on the performance of organic photovoltaic cells. Applied Physics Letters, 2009, 94, 203306.	1.5	41
125	Charge transfer at n-doped organic-organic heterojunctions. Journal of Applied Physics, 2009, 105, .	1.1	57
126	Hole Injection in a Model Fluorene–Triarylamine Copolymer. Advanced Functional Materials, 2009, 19, 304-310.	7.8	34

#	Article	IF	Citations
127	N-doping of pentacene by decamethylcobaltocene. Applied Physics A: Materials Science and Processing, 2009, 95, 7-13.	1.1	45
128	Energetics of metal–organic interfaces: New experiments and assessment of the field. Materials Science and Engineering Reports, 2009, 64, 1-31.	14.8	573
129	P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide. Organic Electronics, 2009, 10, 932-938.	1.4	392
130	Electrical Transport and Photoemission Experiments of Alkylphosphonate Monolayers on GaAs. Journal of Physical Chemistry C, 2009, 113, 3313-3321.	1.5	27
131	Use of a High Electron-Affinity Molybdenum Dithiolene Complex to p-Dope Hole-Transport Layers. Journal of the American Chemical Society, 2009, 131, 12530-12531.	6.6	91
132	Doping Molecular Monolayers: Effects on Electrical Transport Through Alkyl Chains on Silicon. Advanced Functional Materials, 2008, 18, 2102-2113.	7.8	31
133	Electronic Current Transport through Molecular Monolayers: Comparison between Hg/Alkoxy and Alkyl Monolayer/Si(100) Junctions. Advanced Materials, 2008, 20, 3931-3936.	11.1	43
134	Decamethylcobaltocene as an efficient n-dopant in organic electronic materials and devices. Organic Electronics, 2008, 9, 575-581.	1.4	95
135	Improving charge injection in organic thin-film transistors with thiol-based self-assembled monolayers. Organic Electronics, 2008, 9, 419-424.	1.4	112
136	Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties. Journal of Materials Chemistry, 2008, 18, 3157.	6.7	41
137	Enhancement of electron injection into a light-emitting polymer from an aluminum oxide cathode modified by a self-assembled monolayer. Applied Physics Letters, 2008, 93, .	1.5	37
138	Commensurate growth and diminishing substrate influence in a multilayer film of a tris(thieno)hexaazatriphenylene derivative on $\operatorname{Au}(111)$ studied by scanning tunneling microscopy. Physical Review B, 2008, 77, .	1.1	11
139	Measurements of the Einstein relation in doped and undoped molecular thin films. Physical Review B, 2008, 77, .	1.1	16
140	Substrate-dependent electronic structure of an organic heterojunction. Physical Review B, 2008, 77, .	1.1	30
141	Energy level alignment between 9-phosphonoanthracene self-assembled monolayers and pentacene. Applied Physics Letters, 2007, 90, 012109.	1.5	29
142	Incorporation of cobaltocene as an n-dopant in organic molecular films. Journal of Applied Physics, 2007, 102, 014906.	1.1	36
143	Effect of Doping on Electronic Transport through Molecular Monolayer Junctions. Journal of the American Chemical Society, 2007, 129, 7494-7495.	6.6	27
144	Photoelectron Spectroscopic Study of the Electronic Band Structure of Polyfluorene and Fluorene-Arylamine Copolymers at Interfaces. Journal of Physical Chemistry C, 2007, 111, 1378-1384.	1.5	124

#	Article	IF	Citations
145	Synthesis, Ionisation Potentials and Electron Affinities of Hexaazatrinaphthylene Derivatives. Chemistry - A European Journal, 2007, 13, 3537-3547.	1.7	88
146	What is the Barrier for Tunneling Through Alkyl Monolayers? Results from n- and p-Si–Alkyl/Hg Junctions. Advanced Materials, 2007, 19, 445-450.	11.1	122
147	Electron spectra of a self-assembled monolayer on gold: Inverse photoemission and two-photon photoemission spectroscopy. Chemical Physics Letters, 2007, 446, 359-364.	1.2	13
148	Induced Density of States model for weakly-interacting organic semiconductor interfaces. Organic Electronics, 2007, 8, 241-248.	1.4	135
149	Threshold voltage as a measure of molecular level shift in organic thin-film transistors. Applied Physics Letters, 2006, 88, 043509.	1.5	25
150	Radiation Damage to Alkyl Chain Monolayers on Semiconductor Substrates Investigated by Electron Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 21826-21832.	1.2	34
151	Electronic structure of Si(111)-bound alkyl monolayers: Theory and experiment. Physical Review B, 2006, 74, .	1.1	103
152	Energy Level and Band Alignment for GaAsâ^'Alkylthiol Monolayerâ^'Hg Junctions from Electrical Transport and Photoemission Experiments. Journal of Physical Chemistry B, 2006, 110, 14363-14371.	1.2	66
153	N-type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene. Chemical Physics Letters, 2006, 431, 67-71.	1.2	94
154	Spectroscopic study on sputtered PEDOTÂ-PSS: Role of surface PSS layer. Organic Electronics, 2006, 7, 387-396.	1.4	233
155	Doping-induced realignment of molecular levels at organic–organic heterojunctions. Chemical Physics, 2006, 325, 129-137.	0.9	81
156	Molecular n-Type Doping of 1,4,5,8-Naphthalene Tetracarboxylic Dianhydride by Pyronin B Studied Using Direct and Inverse Photoelectron Spectroscopies. Advanced Functional Materials, 2006, 16, 831-837.	7.8	126
157	Wet Chemical Cleaning of Germanium Surfaces for Growth of High-k Dielectrics. Materials Research Society Symposia Proceedings, 2006, 917, 1.	0.1	14
158	Impact of electrode contamination on the $\hat{l}\pm$ -NPD/Au hole injection barrier. Organic Electronics, 2005, 6, 47-54.	1.4	180
159	Polarization at the gold/pentacene interface. Organic Electronics, 2005, 6, 85-91.	1.4	242
160	Energetics of molecular interfaces. Materials Today, 2005, 8, 32-41.	8.3	312
161	Molecular and solid-state (8-hydroxy-quinoline)aluminum interaction with magnesium: A first-principles study. Journal of Applied Physics, 2005, 98, 023707.	1.1	15
162	How Do Electronic Carriers Cross Si-Bound Alkyl Monolayers?. Physical Review Letters, 2005, 95, 266807.	2.9	124

#	Article	IF	CITATIONS
163	Enhancement of iridium-based organic light-emitting diodes by spatial doping of the hole transport layer. Applied Physics Letters, 2005, 87, 193501.	1.5	11
164	Nanoscale Measurements of Electronic Properties in Organic Thin Film Transistors. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
165	Electron Affinities of 1,1-Diaryl-2,3,4,5-tetraphenylsiloles:Â Direct Measurements and Comparison with Experimental and Theoretical Estimates. Journal of the American Chemical Society, 2005, 127, 9021-9029.	6.6	155
166	Hydrogen passivation of germanium (100) surface using wet chemical preparation. Applied Physics Letters, 2005, 87, 253101.	1.5	143
167	Energy level alignment at organic heterojunctions: Role of the charge neutrality level. Physical Review B, 2005, 71, .	1.1	258
168	Direct Determination of the Hole Density of States in Undoped and Doped Amorphous Organic Films with High Lateral Resolution. Physical Review Letters, 2005, 95, 256405.	2.9	146
169	Contact potential difference measurements of doped organic molecular thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1488-1492.	0.9	9
170	Impact of an interface dipole layer on molecular level alignment at an organic-conductor interface studied by ultraviolet photoemission spectroscopy. Physical Review B, 2004, 70, .	1.1	151
171	Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level. Europhysics Letters, 2004, 65, 802-808.	0.7	216
172	Barrier formation at metal–organic interfaces: dipole formation and the charge neutrality level. Applied Surface Science, 2004, 234, 107-112.	3.1	172
173	Electron Energetics at Surfaces and Interfaces: Concepts and Experiments. Advanced Materials, 2003, 15, 271-277.	11.1	637
174	Optically induced electron transfer from conjugated organic molecules to charged metal clusters. Thin Solid Films, 2003, 441, 145-149.	0.8	29
175	Electronic structure and electrical properties of interfaces between metals and ?-conjugated molecular films. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2529-2548.	2.4	771
176	Chemistry between Magnesium and Multiple Molecules in Tris(8-hydroxyquinoline) Aluminum Films. Journal of the American Chemical Society, 2003, 125, 7808-7809.	6.6	33
177	Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Applied Physics Letters, 2003, 82, 70-72.	1.5	481
178	Effect of electrical doping on molecular level alignment at organic–organic heterojunctions. Applied Physics Letters, 2003, 82, 4815-4817.	1.5	79
179	Dynamic Scaling, Island Size Distribution, and Morphology in the Aggregation Regime of Submonolayer Pentacene Films. Physical Review Letters, 2003, 91, 136102.	2.9	172
180	Direct and inverse photoemission spectroscopy studies of potassium intercalated films of two organic semiconductors. Applied Physics Letters, 2003, 83, 500-502.	1.5	31

#	Article	IF	CITATIONS
181	Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethal Journal of Applied Physics, 2003, 94, 359-366.	า £. 1	266
182	Interplay between morphology, structure, and electronic properties at diindenoperylene-gold interfaces. Physical Review B, 2003, 68, .	1.1	116
183	Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current–voltage characteristics. Applied Physics Letters, 2003, 82, 2281-2283.	1.5	96
184	Lack of thermodynamic equilibrium in conjugated organic molecular thin films. Physical Review B, 2003, 67, .	1,1	29
185	Electrical doping: the impact on interfaces ofÂ-conjugated molecular films. Journal of Physics Condensed Matter, 2003, 15, S2757-S2770.	0.7	67
186	Metal vs. Polymer Electrodes in Organic Devices: Energy Level Alignment, Hole Injection, and Structure. Materials Research Society Symposia Proceedings, 2003, 771, 361.	0.1	4
187	Physisorption-like Interaction at the Interfaces Formed by Pentacene and Samarium. Journal of Physical Chemistry B, 2002, 106, 4192-4196.	1.2	60
188	The Vibrational Reorganization Energy in Pentacene:  Molecular Influences on Charge Transport. Journal of the American Chemical Society, 2002, 124, 7918-7919.	6.6	425
189	Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects. Organic Electronics, 2002, 3, 53-63.	1.4	252
190	Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA. Chemical Physics Letters, 2002, 360, 47-52.	1.2	261
191	Lithium doping of semiconducting organic charge transport materials. Journal of Applied Physics, 2001, 89, 4986-4992.	1.1	336
192	Chemical and electrical properties of interfaces between magnesium and aluminum and tris-(8-hydroxy) Tj ETQq0	ጋ _{1.1} rgBT /(Overlock 10 147
193	Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals. Materials Research Society Symposia Proceedings, 2001, 708, 241.	0.1	2
194	The role of interface states in controlling the electronic structure of Alq3/reactive metal contacts. Organic Electronics, 2001, 2, 89-95.	1.4	79
195	Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study. Applied Physics Letters, 2001, 79, 4040-4042.	1.5	336
196	Electronic structure, diffusion, andp-doping at the Au/F16CuPc interface. Journal of Applied Physics, 2001, 90, 4549-4554.	1.1	109
197	Role of metal–molecule chemistry and interdiffusion on the electrical properties of an organic interface: The Al–F16CuPc case. Journal of Applied Physics, 2001, 90, 6236-6242.	1.1	51
198	Charge-separation energy in films of π-conjugated organic molecules. Chemical Physics Letters, 2000, 327, 181-188.	1.2	718

#	Article	IF	Citations
199	Metal-dependent charge transfer and chemical interaction at interfaces between 3,4,9,10-perylenetetracarboxylic bisimidazole and gold, silver and magnesium. Organic Electronics, 2000, 1, 5-13.	1.4	149
200	Organic semiconductor interfaces: electronic structure and transport properties. Applied Surface Science, 2000, 166, 354-362.	3.1	278
201	Occupied and unoccupied electronic levels in organic π-conjugated molecules: comparison between experiment and theory. Chemical Physics Letters, 2000, 317, 444-450.	1.2	130
202	The Influence of Steps on the Orientation of Copper Phthalocyanine Monolayers on Au(111). Langmuir, 2000, 16, 4358-4361.	1.6	107
203	Organometallic Chemistry at the Magnesiumâ [*] Tris(8-hydroxyquinolino)aluminum Interface. Journal of the American Chemical Society, 2000, 122, 5391-5392.	6.6	62
204	Surface oxidation activates indium tin oxide for hole injection. Journal of Applied Physics, 2000, 87, 572-576.	1.1	279
205	Transparent stacked organic light emitting devices. I. Design principles and transparent compound electrodes. Journal of Applied Physics, 1999, 86, 4067-4075.	1.1	82
206	Negative electron affinity at the Cs/AlN(0001) surface. Applied Physics Letters, 1999, 74, 1433-1435.	1.5	28
207	Role of Electrode Contamination in Electron Injection at Mg:Ag/Alq3 Interfaces. Advanced Materials, 1999, 11, 1523-1527.	11.1	32
208	Combined photoemission/in vacuo transport study of the indium tin oxide/copper phthalocyanine/N,N′-diphenyl-N,N′-bis(l-naphthyl)-1,1′-biphenyl-4,4″diamine molecular organic semiconductor system. Journal of Applied Physics, 1999, 86, 2116-2122.	1.1	150
209	Electronic states at aluminum nitride (0001)-1×1 surfaces. Applied Physics Letters, 1999, 74, 546-548.	1.5	65
210	Band alignment at organic-inorganic semiconductor interfaces: \hat{l}_{\pm} -NPD and CuPc on InP(110). Journal of Applied Physics, 1999, 85, 6589-6592.	1.1	113
211	Electronic states and effective negative electron affinity at cesiated p-GaN surfaces. Journal of Applied Physics, 1999, 86, 3209-3212.	1.1	104
212	Organic semiconductor heterointerfaces containing bathocuproine. Journal of Applied Physics, 1999, 86, 4515-4519.	1.1	151
213	Molecular-Level Offset at the PTCDA/Alq3 Heterojunction. Advanced Materials, 1998, 10, 140-144.	11.1	59
214	Energy level offset at organic semiconductor heterojunctions. Journal of Applied Physics, 1998, 83, 2649-2655.	1.1	180
215	Molecular level alignment at organic semiconductor-metal interfaces. Applied Physics Letters, 1998, 73, 662-664.	1.5	436
216	Energy level alignment at interfaces of organic semiconductor heterostructures. Journal of Applied Physics, 1998, 84, 5583-5586.	1.1	153

#	Article	IF	Citations
217	Energy-level alignment at interfaces between metals and the organic semiconductor 4,4′-N,N′-dicarbazolyl-biphenyl. Journal of Applied Physics, 1998, 84, 3236-3241.	1.1	106
218	GaN (0001)-($1\tilde{A}$ -1) surfaces: Composition and electronic properties. Journal of Applied Physics, 1998, 83, 4249-4252.	1.1	120
219	Photoemission spectroscopy investigation of magnesium–Alq3 interfaces. Journal of Applied Physics, 1998, 84, 355-358.	1.1	165
220	Structural and Spectroscopic Investigation of the In-Terminated InAs(100) (4 \tilde{A} — 2)/c(8 \tilde{A} — 2) Reconstruction. Surface Review and Letters, 1998, 05, 229-234.	0.5	1
221	Growth of the Organic Molecular Semiconductor PTCDA on Se-Passivated GaAs(100): An STM Study. Surface Review and Letters, 1998, 05, 289-293.	0.5	13
222	Electronic Properties of Metal-Organic Interfaces with Application to Electroluminescent Devices. Molecular Crystals and Liquid Crystals, 1998, 322, 245-252.	0.3	7
223	Self-passivated copper gates for amorphous silicon thin-film transistors. IEEE Electron Device Letters, 1997, 18, 388-390.	2.2	38
224	Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Applied Physics Letters, 1997, 70, 1348-1350.	1.5	678
225	Electron-hole interaction energy in the organic molecular semiconductor PTCDA. Chemical Physics Letters, 1997, 272, 43-47.	1.2	137
226	Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Physical Review B, 1996, 54, 13748-13758.	1.1	305
227	Self-Passivated Copper Gates For Thin Film Silicon Transistors. Materials Research Society Symposia Proceedings, 1996, 446, 59.	0.1	2
228	Chemistry, diffusion, and electronic properties of a metal/organic semiconductor contact: In/perylenetetracarboxylic dianhydride. Applied Physics Letters, 1996, 68, 217-219.	1.5	133
229	ATOMIC STRUCTURE OF (100) SURFACES OF ZINCBLENDE COMPOUND SEMICONDUCTORS. Surface Review and Letters, 1996, 03, 1579-1595.	0.5	10
230	Ordered, quasiepitaxial growth of an organic thin film on Seâ€passivated GaAs(100). Applied Physics Letters, 1995, 66, 944-946.	1.5	44
231	Surface relaxation of PbTe(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1378-1381.	0.9	8
232	Band lineup at an organicâ€inorganic semiconductor heterointerface: perylenetetracarboxylic dianhydride/GaAs(100). Applied Physics Letters, 1994, 64, 3482-3484.	1.5	74
233	Growth of GaAs / Ca0.5Sr0 5F2 / (100) GaAs by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1991, 221, 175.	0.1	0
234	High-resolution synchrotron-radiation core-level spectroscopy of decapped GaAs(100) surfaces. Physical Review B, 1991, 43, 14301-14304.	1.1	126

#	Article	IF	CITATIONS
235	Synchrotron-radiation-induced surface photovoltage on GaAs studied by contact-potential-difference measurements. Physical Review B, 1990, 42, 3228-3230.	1.1	46
236	Adsorption geometry and overlayer morphology in the formation of interfaces between metals and (110) $IIIae^{u}$ surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 2068-2073.	0.9	7
237	Overlayer morphology and metallicity: Formation of In/GaSb(110) barriers at room and low temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 1988-1992.	0.9	7
238	Formation of the Ca/GaAs(110) interface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 744-748.	0.9	5
239	Structural studies of (331) GaAs surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 2039-2043.	0.9	7
240	Elastic electron fineâ€structure investigation of oxygen interaction with the Si(111) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1841-1844.	0.9	4
241	Mbe Growth pf Ca ₅ Sr ₅ F ₂ on (100), (111), (511), and (711) GaAs Surfaces. Materials Research Society Symposia Proceedings, 1989, 148, 185.	0.1	1
242	Correlation between EFpinning and development of metallic character in Ag overlayers on GaAs (110). Physical Review Letters, 1988, 60, 440-443.	2.9	151
243	Overlayer metallicity and Fermiâ€level pinning at the Caâ€GaAs(110) interface. Journal of Applied Physics, 1988, 64, 4777-4780.	1.1	6
244	Elastic electron fine structure: Application to the study of local order. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 2085-2088.	0.9	7
245	Summary Abstract: Lowâ€energy electron diffraction, Auger electron spectroscopy, and electron energyâ€loss spectroscopy studies of (511) and (711) GaAs surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 654-655.	0.9	3
246	Summary Abstract: Aluminum deposition on lowâ€temperature GaAs. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1986, 4, 882-883.	0.9	5
247	Electron energy loss spectroscopy and work function measurements on Sb/GaAs(110): Example of an unpinned interface?. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1986, 4, 958-961.	0.9	23
248	Atomic and electronic structure of the (311) surfaces of GaAs. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1986, 4, 947-952.	0.9	19
249	ZnSe– and Se–GaAs interfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 922-925.	0.9	69
250	Surface order and stoichiometry of sputterâ€cleaned and annealed CuInSe2. Journal of Applied Physics, 1985, 57, 2967-2969.	1.1	39
251	Summary Abstract: GaAs(110)–Al interfaces formed at low temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 566-567.	0.9	3
252	LEED and AES characterization of the GaAs(110)–ZnSe interface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 511-514.	0.9	10

#	Article	IF	Citations
253	The atomic geometries of GaP(110) and ZnS(110) revisited: A structural ambiguity and its resolution. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 515-518.	0.9	41
254	Semiconductor surface structures. Surface Science Reports, 1983, 3, 193-300.	3.8	250
255	An AES–ELEED study of the Al/GaP(110) interface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 588-591.	0.9	6
256	Atomic geometries of compound semiconductor surfaces and interfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 684-691.	0.9	26
257	Comparison of the atomic geometries of GaSb(110) and ZnTe(110): Failure of ionicityâ€structure correlations. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 672-675.	0.9	24
258	Dynamical analysis of low-energy electron diffraction intensities from GaAs(110)-p($1\tilde{A}$ -1)-Sb(1 ML). Physical Review B, 1982, 26, 803-814.	1.1	170
259	Summary Abstract: Surface atomic geometry of CdTe(110). Journal of Vacuum Science and Technology, 1982, 20, 778-779.	1.9	12
260	Analysis of lowâ€energy electron diffraction intensities from ZnS(110). Journal of Vacuum Science and Technology, 1981, 18, 866-870.	1.9	28
261	Surface atomic geometry of covalently bonded semiconductors: $InSb(110)$ and its comparison with $GaAs(110)$ and $ZnTe(110)$. Journal of Vacuum Science and Technology, 1980, 17, 501-505.	1.9	24
262	The structure, chemistry, and spectroscopy of the surfaces of tetrahedrally coordinated semiconductors. Critical Reviews in Solid State and Materials Sciences, 1979, 8, 317-381.	6.8	11
263	Structure determination for the (110) surface of zincblende structure compound semiconductors. Journal of Vacuum Science and Technology, 1979, 16, 1252-1257.	1.9	48
264	Dynamical calculation of low-energy electron diffraction intensities from GaAs(110): Influence of boundary conditions, exchange potential, lattice vibrations, and multilayer reconstructions. Physical Review B, 1979, 19, 5194-5205.	1.1	138
265	Atomic structure of the annealed $Ge(111)$ surface. Journal of Vacuum Science and Technology, 1978, 15, 1143-1145.	1.9	22
266	Fundamental electronic properties of metal-organic contacts and organic-organic heterojunctions. , 0, , .		0