
John S Preston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3167340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spontaneous Relaxation of Heteroepitaxial Thin Films by van der Waals‣ike Bonding on Teâ€Terminated Sapphire Substrates. Small, 2020, 16, e2004437.	10.0	1
2	Temperatureâ€Induced Atomic Reconstruction At Au/MgAl ₂ O ₄ Interfaces. Advanced Materials Interfaces, 2018, 5, 1701664.	3.7	8
3	Metal-Oxide Interfaces: Temperature-Induced Atomic Reconstruction At Au/MgAl2 O4 Interfaces (Adv.) Tj ETQq1	1	4 rgBT /Ove
4	Evidence for an equilibrium epitaxial complexion at the Au-MgAl2O4 interface. Applied Physics Letters, 2015, 107, .	3.3	9
5	A DFT study on the effect of surface termination in CdTe (111)/α-Al2O3 (0001) heteroepitaxy. Surface Science, 2015, 632, 93-97.	1.9	6
6	Atomic structure and bonding of the interfacial bilayer between Au nanoparticles and epitaxially regrown MgAl2O4 substrates. Applied Physics Letters, 2014, 105, .	3.3	16
7	Purified water etching of native oxides on heteroepitaxial CdTe thin films. Journal Physics D: Applied Physics, 2014, 47, 495304.	2.8	1
8	Photovoltaic properties of M-phthalocyanine/fullerene organic solar cells. Solar Energy, 2012, 86, 1683-1688.	6.1	58
9	Plasmonic Enhancement of Nonradiative Charge Carrier Relaxation and Proposed Effects from Enhanced Radiative Electronic Processes in Semiconductorâ^'Gold Coreâ^'Shell Nanorod Arrays. Journal of Physical Chemistry C, 2011, 115, 5578-5583.	3.1	14
10	A simple parallel tandem organic solar cell based on metallophthalocyanines. Applied Physics Letters, 2011, 98, .	3.3	21
11	Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 3137-3141.	6.2	13
12	Heteromorphic chloroindium phthalocyanine films for improved photovoltaic performance. Solar Energy Materials and Solar Cells, 2011, 95, 2937-2940.	6.2	13
13	Strain relief and AlSb buffer layer morphology in GaSb heteroepitaxial films grown on Si as revealed by high-angle annular dark-field scanning transmission electron microscopy. Applied Physics Letters, 2011, 98, .	3.3	45
14	The rapid prototyping of textured amorphous surfaces forÂtheÂgraphoepitaxial deposition of CdTe films usingÂfocusedÂionÂbeamÂlithography. Applied Physics A: Materials Science and Processing, 2011, 102, 259-264.	2.3	0
15	Integration of an M-phthalocyanine layer into solution-processed organic photovoltaic cells for improved spectral coverage. Solar Energy Materials and Solar Cells, 2011, 95, 1970-1973.	6.2	24
16	(100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT. Applied Physics A: Materials Science and Processing, 2010, 98, 187-194.	2.3	9
17	Improved stability of solution processed photovoltaic devices using PQT-12. Solar Energy Materials and Solar Cells, 2010, 94, 2455-2458.	6.2	7
18	Self-activated reversibility in the magnetically induced reorientation of martensitic variants in ferromagnetic Ni-Mn-Ga films. Physical Review B, 2010, 81, .	3.2	21

#	Article	IF	CITATIONS
19	Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications. Nanotechnology, 2010, 21, 130201.	2.6	9
20	Blend composition study of poly(3,3‴-didodecylquaterthiophene)/[6,6]-phenyl C61 butyric acid methyl ester solution processed organic solar cells. Journal of Applied Physics, 2009, 105, 016105.	2.5	10
21	Atypical grain growth for (211) CdTe films deposited on surface reconstructed (100) SrTiO3 substrates. Applied Surface Science, 2009, 255, 5674-5681.	6.1	16
22	The role of substrate surface termination in the deposition ofÂ(111)ÂCdTe onÂ(0001) sapphire. Applied Physics A: Materials Science and Processing, 2009, 96, 429-433.	2.3	15
23	The role of lattice misfit strains in the deposition of epitaxial (Ba1â~'ySry)Ti0.5Nb0.5O3 films. Journal of Crystal Growth, 2009, 311, 2753-2758.	1.5	1
24	The Dependence of the Plasmon Field Induced Nonradiative Electronic Relaxation Mechanisms on the Gold Shell Thickness in Vertically Aligned CdTeâ^'Au Coreâ^'Shell Nanorods. Nano Letters, 2009, 9, 3772-3779.	9.1	17
25	Exciton Lifetime Tuning by Changing the Plasmon Field Orientation with Respect to the Exciton Transition Moment Direction: CdTe-Au Coreâ^'Shell Nanorods. Nano Letters, 2009, 9, 1242-1248.	9.1	15
26	Epitaxially Driven Formation of Intricate Supported Gold Nanostructures on a Lattice-Matched Oxide Substrate. Nano Letters, 2009, 9, 4258-4263.	9.1	20
27	Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses. Applied Physics A: Materials Science and Processing, 2008, 90, 537-543.	2.3	119
28	The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires. Nanotechnology, 2008, 19, 185601.	2.6	26
29	Plasmon Field Effects on the Nonradiative Relaxation of Hot Electrons in an Electronically Quantized System: CdTeâ^'Au Coreâ^'Shell Nanowires. Nano Letters, 2008, 8, 2410-2418.	9.1	50
30	Structural and transport properties of epitaxial niobium-doped BaTiO3 films. Applied Physics Letters, 2008, 93, 192114.	3.3	21
31	Vertically aligned wurtzite CdTe nanowires derived from a catalytically driven growth mode. Nanotechnology, 2007, 18, 275301.	2.6	67
32	Subsurface modifications in indium phosphide induced by single and multiple femtosecond laser pulses: A study on the formation of periodic ripples. Journal of Applied Physics, 2007, 101, 033519.	2.5	55
33	Measurement of nonlinear absorption coefficients in GaAs, InP and Si by an optical pump THz probe technique. Optics Communications, 2007, 274, 187-197.	2.1	17
34	Defect characterization of CdTe thin films using a slow positron beam. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3659-3663.	0.8	3
35	Ripple formation during deep hole drilling in copper with ultrashort laser pulses. Applied Physics A: Materials Science and Processing, 2007, 89, 1001-1003.	2.3	48
36	Femtosecond laser-based fabrication of a new model material to study fracture. Applied Physics A: Materials Science and Processing, 2006, 86, 55-61.	2.3	26

#	Article	IF	CITATIONS
37	The role of lattice mismatch in the deposition of CdTe thin films. Journal of Electronic Materials, 2006, 35, 1224-1230.	2.2	28
38	Evolution of wurtzite CdTe through the formation of cluster assembled films. Applied Physics Letters, 2006, 89, 133101.	3.3	14
39	Growth of CdTeâ^•Si(100) thin films by pulsed laser deposition for photonic applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 606-611.	2.1	10
40	Microstructure and current transport properties of single-layer YBa2Cu3O7â^'x and multiple-layer YBa2Cu3O7â^'x/(Ba0.05, Sr0.95)TiO3 superconductor films. Thin Solid Films, 2005, 488, 217-222.	1.8	4
41	Chemically ordered fcc (111) Mn–(FexNi1â^'x) alloy ultrathin films. Surface Science, 2005, 588, 49-60.	1.9	2
42	The origin of preferential twinning in YBa2Cu3O7â^ʾĨ́ thin films deposited on the (0 0 1) NdGaO3 substrate. Journal of Applied Physics, 2005, 97, 123906.	2.5	4
43	Laser Scanning Microscopy Studies on Detwinned <tex>\$rm YBa_2rm Cu_3rm O_7-delta\$</tex> Thin Films. IEEE Transactions on Applied Superconductivity, 2005, 15, 3082-3085.	1.7	0
44	Percolative effects in oxygen-depletedYBa2Cu3Oxwires. Physical Review B, 2004, 70, .	3.2	2
45	Magneto-optical Evidence for a Gapped Fermi Surface in UnderdopedYBa2Cu3O6+x. Physical Review Letters, 2004, 93, 137002.	7.8	22
46	Bolometric technique for high-resolution broadband microwave spectroscopy of ultra-low-loss samples. Review of Scientific Instruments, 2004, 75, 124-135.	1.3	30
47	Terahertz pump-probe spectroscopy in YBCO thin films. , 2004, , .		0
48	Observation of Weak-Limit Quasiparticle Scattering via Broadband Microwave Spectroscopy of ad-Wave Superconductor. Physical Review Letters, 2003, 90, 237005.	7.8	67
49	Detwinning YBa2Cu3O7â~'δ thin films. Applied Physics Letters, 2003, 82, 3728-3730.	3.3	4
50	Local characterization of Y-Ba-Cu-O thin films. IEEE Transactions on Applied Superconductivity, 2001, 11, 3226-3229.	1.7	4
51	Infrared Hall Effect in High-TcSuperconductors: Evidence for Non-Fermi-Liquid Hall Scattering. Physical Review Letters, 2000, 84, 3418-3421.	7.8	35
52	Microwave spectroscopy of thermally excited quasiparticles inYBa2Cu3O6.99. Physical Review B, 1999, 60, 1349-1359.	3.2	193
53	Intrinsic picosecond response times of Y–Ba–Cu–O superconducting photodetectors. Applied Physics Letters, 1999, 74, 853-855.	3.3	98
54	Penetration depth from far-infrared transmission in YBa2Cu3O7 thin films. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1998, 20, 563-572.	0.4	0

#	Article	IF	CITATIONS
55	Quantum fluctuations in current-carrying thin films ofYBa2Cu3O7â~ʾδ. Physical Review B, 1997, 55, R14741-R14744.	3.2	8
56	Switching speed for controlled damping using thin film YBa2Cu3O7-δ. Cryogenics, 1997, 37, 113-116.	1.7	6
57	Ultrafast photoresponse in microbridges and pulse propagation in transmission lines made from high-T/sub c/ superconducting Y-Ba-Cu-O thin films. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2, 668-678.	2.9	47
58	Flux dynamics in thin films of YBa2Cu3O7â^Î. European Physical Journal D, 1996, 46, 1633-1634.	0.4	0
59	Picosecond photoresponse of YBa2Cu3O7â^'x thin films. European Physical Journal D, 1996, 46, 1111-1112.	0.4	1
60	Josephson current in an anisotropicd-wave model. Physical Review B, 1995, 51, 6588-6593.	3.2	25
61	Current–voltage characteristics of dc voltage biased high temperature superconducting microbridges. Applied Physics Letters, 1995, 66, 2576-2578.	3.3	32
62	A superconducting microwave switch. IEEE Transactions on Applied Superconductivity, 1995, 5, 3046-3048.	1.7	5
63	Electroâ€optic sampling of 1.5â€ps photoresponse signal from YBa2Cu3O7â^δthin films. Applied Physics Letters, 1995, 67, 285-287.	3.3	63
64	Picosecond photoresponse of epitaxial YBa2Cu3O7â~δthin films. Applied Physics Letters, 1994, 64, 3172-3174.	3.3	24
65	Disorder and superconducting-state conductivity of single crystals ofYBa2Cu3O6.95. Physical Review B, 1994, 49, 12165-12169.	3.2	122
66	Laser ablation as a processing technique for metallic and polymer layered structures. IEEE Transactions on Semiconductor Manufacturing, 1994, 7, 73-78.	1.7	10
67	Evaluation of LaSrGaO4 as a substrate for YBa2Cu3O7â^Î′. Physica C: Superconductivity and Its Applications, 1994, 225, 7-12.	1.2	22
68	In situgrowth of layered, spinel, and rockâ€salt LiCoO2by laser ablation deposition. Journal of Applied Physics, 1994, 76, 2799-2806.	2.5	103
69	<title>Thermionic emission and tunneling in a strained InGaAsP 1.3 um multiple quantum well laser
structure</title> . , 1994, , .		1
70	High-speed kinetic inductive bolometric photoresponse of epitaxial YBa 2 Cu 3 O 7-δ thin films. , 1994, 2159, 88.		3
71	Origin of the fast photoresponse of epitaxialYBa2Cu3O7â~δthin films. Physical Review B, 1993, 48, 16023-16039.	3.2	57
72	Observation of separate electron and hole escape rates in unbiased strained InGaAsP multiple quantum well laser structures. Applied Physics Letters, 1993, 62, 2525-2527.	3.3	4

#	Article	IF	CITATIONS
73	Identification of nonbolometric photoresponse in YBa2Cu3O7â^îîthin films based on magnetic field dependence. Applied Physics Letters, 1993, 62, 1158-1160.	3.3	16
74	Normal-state optical properties ofNd1.85Ce0.15CuO4+δ. Physical Review B, 1993, 47, 985-990.	3.2	17
75	Interpretation of the harmonic response of superconducting films to inhomogeneous ac magnetic fields. Physical Review B, 1993, 48, 1077-1084.	3.2	14
76	Growth of Nd1.85Ce0.15CuO4+δ thin films by laser ablation. Physica C: Superconductivity and Its Applications, 1992, 197, 75-78.	1.2	7
77	Growth of (Pb0.75Cu0.25)Sr2(Y1â^'yCay)Cu2O7thin films by laser ablation. Applied Physics Letters, 1991, 59, 2597-2599.	3.3	10
78	Insitugrowth of PbSrYCaCuO films by laser ablation. Applied Physics Letters, 1991, 58, 762-764.	3.3	18
79	Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well. Physical Review B, 1989, 39, 1862-1870.	3.2	58
80	Optical absorption in metallic-dielectric microstructures. Physical Review B, 1989, 40, 3931-3941.	3.2	10
81	Pattern formation during laser melting of silicon. Physical Review B, 1989, 40, 3942-3954.	3.2	37
82	Order-Disorder Transitions in the Melt Morphology of Laser-Irradiated Silicon. Physical Review Letters, 1987, 58, 69-72.	7.8	29
83	Kinetics of plasmas and melting induced in silicon and germanium by nanosecond laser pulses. Physical Review B, 1984, 30, 1950-1956.	3.2	32
84	Laser-induced periodic surface structure. I. Theory. Physical Review B, 1983, 27, 1141-1154.	3.2	1,153
85	Observation of a soret-dufour effect for laser-generated carriers in germanium. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1983, 117-118, 1021-1023.	0.9	0
86	Time-resolved evolution of laser-induced periodic surface structure on germanium. Physical Review B, 1983, 27, 1424-1427.	3.2	24
87	Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Physical Review B, 1983, 27, 1155-1172.	3.2	584
88	Confinement of laserâ€generated carriers in semiconductors by induced lattice temperature gradients. Applied Physics Letters, 1982, 40, 385-387.	3.3	24
89	Laserâ€induced periodic surface damage and radiation remnants. Applied Physics Letters, 1982, 41, 261-264.	3.3	88