List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3166561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obesity and cancer risk: evidence, mechanisms, and recommendations. Annals of the New York Academy of Sciences, 2012, 1271, 37-43.	3.8	468
2	?-Catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. Journal of Cellular Biochemistry, 2005, 94, 403-418.	2.6	203
3	Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. Journal of Cell Science, 2006, 119, 4187-4198.	2.0	161
4	Gap junctions in skeletal development and function. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1719, 69-81.	2.6	125
5	Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Cell Systems, 2017, 4, 46-59.e4.	6.2	124
6	Gap Junctional Communication Modulates Gene Transcription by Altering the Recruitment of Sp1 and Sp3 to Connexin-response Elements in Osteoblast Promoters. Journal of Biological Chemistry, 2003, 278, 24377-24387.	3.4	121
7	Gap Junctions Regulate Extracellular Signal-regulated Kinase Signaling to Affect Gene Transcription. Molecular Biology of the Cell, 2005, 16, 64-72.	2.1	114
8	Cell-to-cell interactions in bone. Biochemical and Biophysical Research Communications, 2005, 328, 721-727.	2.1	101
9	Targeted expression of a dominant-negative N-cadherin in vivo delays peak bone mass and increases adipogenesis. Journal of Cell Science, 2004, 117, 2853-2864.	2.0	97
10	Effects of <i>in vivo</i> injury on the neuromuscular junction in healthy and dystrophic muscles. Journal of Physiology, 2013, 591, 559-570.	2.9	94
11	Cellâ€cell interactions in regulating osteogenesis and osteoblast function. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 72-80.	3.6	84
12	Microtubules tune mechanotransduction through NOX2 and TRPV4 to decrease sclerostin abundance in osteocytes. Science Signaling, 2017, 10, .	3.6	80
13	Celastrus and Its Bioactive Celastrol Protect against Bone Damage in Autoimmune Arthritis by Modulating Osteoimmune Cross-talk. Journal of Biological Chemistry, 2012, 287, 22216-22226.	3.4	79
14	Characterization of a pollen-expressed gene encoding a putative pectin esterase ofPetunia inflata. Plant Molecular Biology, 1994, 25, 539-544.	3.9	77
15	Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Human Molecular Genetics, 2019, 28, 1076-1089.	2.9	76
16	Connexin43 Potentiates Osteoblast Responsiveness to Fibroblast Growth Factor 2 via a Protein Kinase C-Delta/Runx2–dependent Mechanism. Molecular Biology of the Cell, 2009, 20, 2697-2708.	2.1	63
17	Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cellular and Molecular Life Sciences, 2015, 72, 153-164.	5.4	60
18	Defective signaling, osteoblastogenesis, and bone remodeling in a mouse model of connexin43 C-terminal truncation. Journal of Cell Science, 2017, 130, 531-540.	2.0	55

#	Article	IF	CITATIONS
19	The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter. Bone, 2011, 49, 683-692.	2.9	53
20	ERK acts in parallel to PKCδ to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts. American Journal of Physiology - Cell Physiology, 2012, 302, C1035-C1044.	4.6	53
21	Molecular Mechanisms of Osteoblast/Osteocyte Regulation by Connexin43. Calcified Tissue International, 2014, 94, 55-67.	3.1	52
22	Gap junctional regulation of signal transduction in bone cells. FEBS Letters, 2014, 588, 1315-1321.	2.8	50
23	Connexins in the skeleton. Seminars in Cell and Developmental Biology, 2016, 50, 31-39.	5.0	50
24	Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cellular and Molecular Life Sciences, 2015, 72, 2853-2867.	5.4	48
25	Connexin43 and the Intercellular Signaling Network Regulating Skeletal Remodeling. Current Osteoporosis Reports, 2017, 15, 24-31.	3.6	44
26	The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinase Cl´ cascade. Journal of Bone and Mineral Research, 2013, 28, 1468-1477.	2.8	43
27	Altered nuclear dynamics in MDX myofibers. Journal of Applied Physiology, 2017, 122, 470-481.	2.5	42
28	An intact connexin43 is required to enhance signaling and gene expression in osteoblast-like cells. Journal of Cellular Biochemistry, 2013, 114, 2542-2550.	2.6	41
29	Connexin43 and Runx2 Interact to Affect Cortical Bone Geometry, Skeletal Development, and Osteoblast and Osteoclast Function. Journal of Bone and Mineral Research, 2017, 32, 1727-1738.	2.8	40
30	Interaction of connexin43 and protein kinase C-delta during FGF2 signaling. BMC Biochemistry, 2010, 11, 14.	4.4	39
31	Communication of cAMP by connexin43 gap junctions regulates osteoblast signaling and gene expression. Cellular Signalling, 2016, 28, 1048-1057.	3.6	37
32	Connexin43 enhances the expression of osteoarthritis-associated genes in synovial fibroblasts in culture. BMC Musculoskeletal Disorders, 2014, 15, 425.	1.9	36
33	FGF23 Is Endogenously Phosphorylated in Bone Cells. Journal of Bone and Mineral Research, 2015, 30, 449-454.	2.8	30
34	Diminished Canonical β-Catenin Signaling During Osteoblast Differentiation Contributes to Osteopenia in Progeria. Journal of Bone and Mineral Research, 2018, 33, 2059-2070.	2.8	29
35	Interleukinâ€1 β increases gap junctional communication among synovial fibroblasts via the extracellularâ€signalâ€regulated kinase pathway. Biology of the Cell, 2010, 102, 37-49.	2.0	28
36	Asymmetric Distribution of Functional Sodium-Calcium Exchanger in Primary Osteoblasts. Journal of Bone and Mineral Research, 1998, 13, 1862-1869.	2.8	27

#	Article	IF	CITATIONS
37	Identification of shoulder osteoarthritis biomarkers: comparison between shoulders with and without osteoarthritis. Journal of Shoulder and Elbow Surgery, 2015, 24, 382-390.	2.6	27
38	Superparamagnetic Iron Oxide Nanoparticles in Musculoskeletal Biology. Tissue Engineering - Part B: Reviews, 2017, 23, 373-385.	4.8	25
39	Complex Regulation of Tartrate-resistant Acid Phosphatase (TRAP) Expression by Interleukin 4 (IL-4). Journal of Biological Chemistry, 2009, 284, 32968-32979.	3.4	23
40	TRPV4 calcium influx controls sclerostin protein loss independent of purinergic calcium oscillations. Bone, 2020, 136, 115356.	2.9	23
41	The cytoskeleton and connected elements in bone cell mechano-transduction. Bone, 2021, 149, 115971.	2.9	23
42	Inhibition of Na+/Ca2+ Exchange with KB-R7943 or Bepridil Diminishes Mineral Deposition by Osteoblasts. Journal of Bone and Mineral Research, 2001, 16, 1434-1443.	2.8	22
43	Deficiency of the intermediate filament synemin reduces bone mass in vivo. American Journal of Physiology - Cell Physiology, 2016, 311, C839-C845.	4.6	22
44	Differential YAP nuclear signaling in healthy and dystrophic skeletal muscle. American Journal of Physiology - Cell Physiology, 2019, 317, C48-C57.	4.6	22
45	Disparate bone anabolic cues activate bone formation by regulating the rapid lysosomal degradation of sclerostin protein. ELife, 2021, 10, .	6.0	21
46	Induction of an osteocyte-like phenotype by fibroblast growth factor-2. Biochemical and Biophysical Research Communications, 2010, 402, 258-264.	2.1	19
47	Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca ²⁺ signals that are inhibited by oncogenic KRas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26008-26019.	7.1	19
48	Novel multi-functional fluid flow device for studying cellular mechanotransduction. Journal of Biomechanics, 2016, 49, 4173-4179.	2.1	18
49	Expression of Na(+)/Ca(2+) exchanger isoforms (NCX1 and NCX3) and plasma membrane Ca(2+) ATPase during osteoblast differentiation. Journal of Cellular Biochemistry, 2002, 84, 625-35.	2.6	18
50	Connexin43 modulates post-natal cortical bone modeling and mechano-responsiveness. BoneKEy Reports, 2013, 2, 446.	2.7	17
51	A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells. Bone Research, 2016, 4, 16021.	11.4	17
52	Sequence and Structure of the Mouse Connexin45 Gene. Bioscience Reports, 2001, 21, 683-689.	2.4	12
53	Connexin43 enhances Wnt and PGE2-dependent activation of β-catenin in osteoblasts. Pflugers Archiv European Journal of Physiology, 2019, 471, 1235-1243.	2.8	12
54	Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts. PLoS ONE, 2015, 10, e0129999.	2.5	12

#	Article	IF	CITATIONS
55	Real-time scratch assay reveals mechanisms of early calcium signaling in breast cancer cells in response to wounding. Oncotarget, 2018, 9, 25008-25024.	1.8	11
56	Parathyroid-Targeted Overexpression of Regulator of C-Protein Signaling 5 (RGS5) Causes Hyperparathyroidism in Transgenic Mice. Journal of Bone and Mineral Research, 2019, 34, 955-963.	2.8	10
57	L-Plastin deficiency produces increased trabecular bone due to attenuation of sealing ring formation and osteoclast dysfunction. Bone Research, 2020, 8, 3.	11.4	10
58	Axial strain enhances osteotomy repair with a concomitant increase in connexin43 expression. Bone Research, 2015, 3, 15007.	11.4	9
59	Connexin43 regulates osteoprotegerin expression via ERK1/2 -dependent recruitment of Sp1. Biochemical and Biophysical Research Communications, 2019, 509, 728-733.	2.1	9
60	Failure of Indomethacin and Radiation to Prevent Blast-induced Heterotopic Ossification in a Sprague-Dawley Rat Model. Clinical Orthopaedics and Related Research, 2019, 477, 644-654.	1.5	9
61	Sarcomeric deficits underlie MYBPC1-associated myopathy with myogenic tremor. JCI Insight, 2021, 6, .	5.0	8
62	Mathematical models for bone density assessment. , 2016, , .		6
63	Intercellular junctions and cellâ ϵ "cell communication in the skeletal system. , 2020, , 423-442.		6
64	A Functional Assay to Assess Connexin 43-Mediated Cell-to-Cell Communication of Second Messengers in Cultured Bone Cells. Methods in Molecular Biology, 2016, 1437, 193-201.	0.9	5
65	Intraoperative Tobramycin Powder Prevents Enterobacter cloacae Surgical Site Infections in a Rabbit Model of Internal Fixation. Journal of Orthopaedic Trauma, 2021, 35, 35-40.	1.4	5
66	Peptidomimetic inhibitor of L-plastin reduces osteoclastic bone resorption in aging female mice. Bone Research, 2021, 9, 22.	11.4	5
67	Methylsulfonylmethane Increases the Alveolar Bone Density of Mandibles in Aging Female Mice. Frontiers in Physiology, 2021, 12, 708905.	2.8	4
68	Development of Mice with Osteoblast-Specific Connexin43 Gene Deletion. Cell Communication and Adhesion, 2003, 10, 445-450.	1.0	3
69	In vitro Fluid Shear Stress Induced Sclerostin Degradation and CaMKII Activation in Osteocytes. Bio-protocol, 2021, 11, e4251.	0.4	2
70	Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. Frontiers in Rehabilitation Sciences, 2021, 2, .	1.2	2
71	Algorithmic Quantification of Skull Bone Density. , 2017, , .		1
72	Gap junctional communication in bone: role in cell function and disease. Current Opinion in Orthopaedics, 2006, 17, 390-397.	0.3	0

JOSEPH P STAINS

#	Article	IF	CITATIONS
73	The mechanical role of a cytoskeletal protein, Synemin, in bone, heart and skeletal muscle. AIP Conference Proceedings, 2019, , .	0.4	0
74	Regulation of the TRAP Promoter by ILâ \in 4. FASEB Journal, 2008, 22, 1070.3.	0.5	0
75	Use of Mesenchymal Stem Cells to Treat Muscle Strain Injuries. Medicine and Science in Sports and Exercise, 2018, 50, 676.	0.4	0
76	Connexin43 Gap Junctions and the Control of Skeletal Remodeling. FASEB Journal, 2019, 33, 200.3.	0.5	0
77	Age-Dependent Changes in Nuclear Mechanotransduction as a Driver of Sarcopenia. Innovation in Aging, 2020, 4, 129-129.	0.1	0
78	Bone Cell Communication Through Gap Junctions. , 2020, , 480-490.		0
79	Inhibition of YAP signaling improves recovery in injured skeletal muscle. FASEB Journal, 2022, 36, .	0.5	0