Ji-Zhong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3164614/publications.pdf

Version: 2024-02-01

91 papers 16,548 citations

50170 46 h-index 89 g-index

98 all docs 98 docs citations 98 times ranked 14604 citing authors

#	Article	IF	CITATIONS
1	Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃). Advanced Materials, 2015, 27, 7162-7167.	11.1	2,457
2	CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2435-2445.	7.8	2,055
3	Allâ€Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 2015, 27, 7101-7108.	11.1	1,095
4	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.	7.8	1,072
5	50â€Fold EQE Improvement up to 6.27% of Solutionâ€Processed Allâ€Inorganic Perovskite CsPbBr ₃ QLEDs via Surface Ligand Density Control. Advanced Materials, 2017, 29, 1603885.	11.1	982
6	Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. Journal of the American Chemical Society, 2017, 139, 11443-11450.	6.6	705
7	A Voltageâ€Boosting Strategy Enabling a Lowâ€Frequency, Flexible Electromagnetic Wave Absorption Device. Advanced Materials, 2018, 30, e1706343.	11.1	691
8	Monolayer and Fewâ€Layer Allâ€Inorganic Perovskites as a New Family of Twoâ€Dimensional Semiconductors for Printable Optoelectronic Devices. Advanced Materials, 2016, 28, 4861-4869.	11.1	614
9	Ce ³⁺ -Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr ₃ Nanocrystals Based Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 3626-3634.	6.6	442
10	Roomâ€Temperature Tripleâ€Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQEâ€11.6% Perovskite QLEDs. Advanced Materials, 2018, 30, e1800764.	11.1	431
11	Organic–Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48%. Advanced Materials, 2018, 30, e1805409.	11.1	409
12	Improving Allâ€Inorganic Perovskite Photodetectors by Preferred Orientation and Plasmonic Effect. Small, 2016, 12, 5622-5632.	5.2	314
13	Healing Allâ€Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. Advanced Functional Materials, 2016, 26, 5903-5912.	7.8	296
14	Superstable Transparent Conductive Cu@Cu ₄ Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics. Nano Letters, 2014, 14, 6298-6305.	4.5	262
15	Cu–N Dopants Boost Electron Transfer and Photooxidation Reactions of Carbon Dots. Angewandte Chemie - International Edition, 2015, 54, 6540-6544.	7.2	244
16	Ultralarge Allâ€Inorganic Perovskite Bulk Single Crystal for Highâ€Performance Visible–Infrared Dualâ€Modal Photodetectors. Advanced Optical Materials, 2017, 5, 1700157.	3.6	244
17	Double-Protected All-Inorganic Perovskite Nanocrystals by Crystalline Matrix and Silica for Triple-Modal Anti-Counterfeiting Codes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26556-26564.	4.0	232
18	Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nature Photonics, 2021, 15, 238-244.	15.6	231

#	Article	IF	CITATIONS
19	High Performance Metal Halide Perovskite Lightâ€Emitting Diode: From Material Design to Device Optimization. Small, 2017, 13, 1701770.	5.2	209
20	A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nature Communications, 2020, 11, 3902.	5.8	204
21	Narrowband Perovskite Photodetector-Based Image Array for Potential Application in Artificial Vision. Nano Letters, 2018, 18, 7628-7634.	4.5	180
22	Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Science Bulletin, 2021, 66, 36-43.	4.3	162
23	All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C, 2017, 5, 4565-4570.	2.7	149
24	Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C, 2017, 5, 11369-11394.	2.7	138
25	Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices. Angewandte Chemie - International Edition, 2015, 54, 9760-9774.	7.2	135
26	A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Materials Today Nano, 2019, 6, 100036.	2.3	118
27	Efficient Blue Perovskite Lightâ€Emitting Diodes Boosted by 2D/3D Energy Cascade Channels. Advanced Functional Materials, 2020, 30, 2001732.	7.8	118
28	Nearâ€Infrared Plasmonic 2D Semimetals for Applications in Communication and Biology. Advanced Functional Materials, 2016, 26, 1793-1802.	7.8	114
29	Epitaxial ZnO Nanowireâ€onâ€Nanoplate Structures as Efficient and Transferable Field Emitters. Advanced Materials, 2013, 25, 5750-5755.	11.1	111
30	Stable, Efficient Red Perovskite Lightâ€Emitting Diodes by (α, Î)â€CsPbl ₃ Phase Engineering. Advanced Functional Materials, 2018, 28, 1804285.	7.8	105
31	Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 2017, 62, 369-380.	4.3	96
32	Recent advances and prospects toward blue perovskite materials and lightâ€emitting diodes. InformaÄnÃ- Materiály, 2019, 1, 211-233.	8.5	84
33	Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy, 2016, 30, 173-179.	8.2	82
34	Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light: Science and Applications, 2020, 9, 163.	7.7	81
35	A Ternary Solvent Method for Largeâ€Sized Twoâ€Dimensional Perovskites. Angewandte Chemie - International Edition, 2017, 56, 2390-2394.	7.2	80
36	Constructing Mieâ€Scattering Porous Interfaceâ€Fused Perovskite Films to Synergistically Boost Light Harvesting and Carrier Transport. Angewandte Chemie - International Edition, 2017, 56, 5232-5236.	7.2	75

#	Article	IF	CITATIONS
37	Synthesis of stable and phase-adjustable CsPbBr ₃ @Cs ₄ PbBr ₆ nanocrystals <i>via</i> novel anion–cation reactions. Nanoscale Advances, 2019, 1, 980-988.	2.2	67
38	Green Perovskite Lightâ€Emitting Diodes with 200ÂHours Stability and 16% Efficiency: Crossâ€Linking Strategy and Mechanism. Advanced Functional Materials, 2021, 31, 2011003.	7.8	67
39	Quantum Dots: CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes (Adv.) Tj ETC	Qq17180.78	343 54 rgBT /0
40	Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Communications Physics, 2018, 1 , .	2.0	59
41	Nanowire-based transparent conductors for flexible electronics and optoelectronics. Science Bulletin, 2017, 62, 143-156.	4.3	57
42	Photonâ€Induced Reversible Phase Transition in CsPbBr ₃ Perovskite. Advanced Functional Materials, 2019, 29, 1807922.	7.8	56
43	A General Oneâ€Pot Strategy for the Synthesis of Highâ€Performance Transparentâ€Conductingâ€Oxide Nanocrystal Inks for Allâ€Solutionâ€Processed Devices. Angewandte Chemie - International Edition, 2015, 54, 462-466.	7.2	52
44	An all-inkjet-printed flexible UV photodetector. Nanoscale, 2017, 9, 8580-8585.	2.8	49
45	Heterogeneous Nucleation toward Polarâ€Solventâ€Free, Fast, and Oneâ€Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. Advanced Materials Interfaces, 2018, 5, 1800010.	1.9	49
46	Novel Lewis Base Cyclam Self-Passivation of Perovskites without an Anti-Solvent Process for Efficient Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14224-14232.	4.0	48
47	A zinc non-halide dopant strategy enables efficient perovskite CsPbl ₃ quantum dot-based light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1444-1453.	3.2	48
48	Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping. Science Bulletin, 2021, 66, 2189-2198.	4.3	48
49	Highâ€Efficiency Pureâ€Color Inorganic Halide Perovskite Emitters for Ultrahighâ€Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices. Small Methods, 2018, 2, 1700382.	4.6	47
50	Perovskite Nanocrystal Fluorescence-Linked Immunosorbent Assay Methodology for Sensitive Point-of-Care Biological Test. Matter, 2020, 3, 273-286.	5.0	46
51	Controlling oxygen vacancies and properties of ZnO. Current Applied Physics, 2014, 14, 521-527.	1.1	42
52	Flexible quantum dot–PVA composites for white LEDs. Journal of Materials Chemistry C, 2015, 3, 257-264.	2.7	41
53	Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Science China Materials, 2017, 60, 811-818.	3.5	38
54	Room-temperature synthesis of perovskite-phase CsPbI3 nanocrystals for optoelectronics via a ligand-mediated strategy. Chemical Engineering Journal, 2021, 418, 129361.	6.6	38

#	Article	IF	Citations
55	Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 10564-10570.	1.5	37
56	Wearable and visual pressure sensors based on Zn ₂ GeO ₄ @polypyrrole nanowire aerogels. Journal of Materials Chemistry C, 2017, 5, 11018-11024.	2.7	34
57	Ag/white graphene foam for catalytic oxidation of methanol with high efficiency and stability. Journal of Materials Chemistry A, 2015, 3, 6679-6684.	5.2	28
58	A Ternary Solvent Method for Largeâ€Sized Twoâ€Dimensional Perovskites. Angewandte Chemie, 2017, 129, 2430-2434.	1.6	28
59	A low-dimension structure strategy for flexible photodetectors based on perovskite nanosheets/ZnO nanowires with broadband photoresponse. Science China Materials, 2020, 63, 100-109.	3.5	26
60	Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances. Israel Journal of Chemistry, 2019, 59, 649-660.	1.0	25
61	Bicolor Light-Emitting Diode Based on Zinc Oxide Nanorod Arrays and Poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene. Journal of Electronic Materials, 2012, 41, 431-436.	1.0	24
62	ZnO-Nanowires/PANI Inorganic/Organic Heterostructure Light-Emitting Diode. Journal of Nanoscience and Nanotechnology, 2010, 10, 7254-7257.	0.9	23
63	Nanocrystals: Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃) (Adv. Mater. 44/2015). Advanced Materials, 2015, 27, 7161-7161.	11.1	23
64	Nickel concentration-dependent opto-electrical performances and stability of Cu@CuNi nanowire transparent conductors. RSC Advances, 2016, 6, 91394-91400.	1.7	19
65	Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition. Journal of Semiconductors, 2020, 41, 052205.	2.0	19
66	All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells. Journal of Materials Chemistry A, 2021, 9, 18947-18973.	5.2	19
67	Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs. Journal of Nanoparticle Research, 2010, 12, 3019-3024.	0.8	18
68	Highly efficient sky-blue light-emitting diodes based on Cu-treated halide perovskite nanocrystals. Journal of Materials Chemistry C, 2020, 8, 13445-13452.	2.7	17
69	High-temperature-mixing hydrothermal synthesis of ZnO nanocrystals with wide growth window. Current Applied Physics, 2014, 14, 359-365.	1.1	16
70	Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach. Science Bulletin, 2017, 62, 693-699.	4.3	16
71	Flat, Luminescent, and Defect-Less Perovskite Films on PVK for Light-Emitting Diodes with Enhanced Efficiency and Stability. ACS Applied Electronic Materials, 2020, 2, 3530-3537.	2.0	16
72	Controllable Transient Photocurrent in Photodetectors Based on Perovskite Nanocrystals via Doping and Interfacial Engineering. Journal of Physical Chemistry C, 2021, 125, 5475-5484.	1.5	15

#	Article	IF	Citations
73	MgZnO Nanocrystals: Mechanism for Dopantâ€Stimulated Selfâ€Assembly. Small, 2015, 11, 5097-5104.	5.2	12
74	Constructing Mieâ€Scattering Porous Interfaceâ€Fused Perovskite Films to Synergistically Boost Light Harvesting and Carrier Transport. Angewandte Chemie, 2017, 129, 5316-5320.	1.6	12
75	Nanowire network-based photodetectors with imaging performance for omnidirectional photodetecting through a wire-shaped structure. RSC Advances, 2018, 8, 33666-33673.	1.7	12
76	The Synergy of Plasmonic Enhancement and Hotâ€Electron Effect on CsPbBr ₃ Nanosheets Photodetector. Advanced Materials Interfaces, 2021, 8, 2002053.	1.9	12
77	Recent progress on defect modulation for highly efficient metal halide perovskite light-emitting diodes. Applied Materials Today, 2021, 22, 100946.	2.3	11
78	Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics. Nanoscale, 2017, 9, 19374-19383.	2.8	10
79	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	2.5	9
80	ZnO nanowire lines and bundles: Template-deformation-guided alignment for patterned field-electron emitters. Current Applied Physics, 2015, 15, 1296-1302.	1.1	6
81	Self-template Synthesis of Metal Halide Perovskite Nanotubes as Functional Cavities for Tailored Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21100-21108.	4.0	6
82	CsPbl ₃ Perovskite Quantum Dots: Fine Purification and Highly Efficient Light-emitting Diodes. Acta Chimica Sinica, 2021, 79, 126.	0.5	6
83	Colloidal metal oxides in electronics and optoelectronics. , 2020, , 203-246.		3
84	Field Emitters: Epitaxial ZnO Nanowire-on-Nanoplate Structures as Efficient and Transferable Field Emitters (Adv. Mater. 40/2013). Advanced Materials, 2013, 25, 5678-5678.	11.1	2
85	$ m R ilde{A}^{1}\!\!/4}$ cktitelbild: A General One-Pot Strategy for the Synthesis of High-Performance Transparent-Conducting-Oxide Nanocrystal Inks for All-Solution-Processed Devices (Angew. Chem.) Tj ETQq1 1 0.7	′8.4 314 rgl	BIT /Overlo
86	Metal Halide Perovskite-Based Phosphors and Their Applications in LEDs. Engineering Materials, 2022, , 3-49.	0.3	1
87	51.4: <i>Invited Paper:</i> Quantum dot lightâ€emitting diodes based on allâ€inorganic perovskite CsPbX ₃ . Digest of Technical Papers SID International Symposium, 2019, 50, 569-569.	0.1	O
88	Pâ€13.4: Allâ€Inorganic Perovskite Lightâ€Emitting Diodes based on Heatingâ€Assisted Vacuum Evaporation with ultraâ€pure emission. Digest of Technical Papers SID International Symposium, 2019, 50, 966-966.	0.1	0
89	Pâ€13.6: Efficiency Improvement of CsPbI ₃ Quantum dot Light Emitting Diodes via Alkyl Chain Ligand Regulation. Digest of Technical Papers SID International Symposium, 2019, 50, 970-970.	0.1	O
90	Photodetectors Based on Perovskite Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2021, , 75-117.	0.4	O

#	Article	IF	CITATIONS
91	IMPROVEMENT OF OPTICAL PROPERTIES OF ZnO-SILICONE NANOCOMPOSITES BY CHEMICAL GRAFTING. Acta Polymerica Sinica, 2010, 00, 1406-1410.	0.0	0