
Nuria Montserrat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3163034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissecting nephron morphogenesis using kidney organoids from human pluripotent stem cells. Current Opinion in Genetics and Development, 2022, 72, 22-29.	3.3	1
2	ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNÎ ³ -driven immunopathology. ELife, 2022, 11, .	6.0	42
3	Editorial: Transplant International Goes for GOLD!. Transplant International, 2022, 36, 10340.	1.6	2
4	Principles for the design of multicellular engineered living systems. APL Bioengineering, 2022, 6, 010903.	6.2	17
5	Editorial: Rubies for ESOT!. Transplant International, 2022, 35, 10529.	1.6	0
6	A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metabolism, 2022, 34, 857-873.e9.	16.2	40
7	Clinical grade <scp>ACE2</scp> as a universal agent to block <scp>SARSâ€CoV</scp> â€2 variants. EMBO Molecular Medicine, 2022, 14, .	6.9	35
8	Rethinking organoid technology through bioengineering. Nature Materials, 2021, 20, 145-155.	27.5	150
9	The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation. Cell Metabolism, 2021, 33, 379-394.e8.	16.2	93
10	Editorial: changing of the guard at Transplant International. Transplant International, 2021, 34, 609-609.	1.6	10
11	Task force groups of Transplant International: working together to globally connect the transplant community of tomorrow. Transplant International, 2021, 34, 767-768.	1.6	3
12	The power of online tools for dissemination: social media, visual abstract, and beyond. Transplant International, 2021, 34, 1174-1176.	1.6	3
13	Miniâ€organs forum: how to advance organoid technology to organ transplant community. Transplant International, 2021, 34, 1588-1593.	1.6	10
14	T―and B ell therapy in solid organ transplantation: current evidence and future expectations. Transplant International, 2021, 34, 1594-1606.	1.6	1
15	The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms, 2021, 9, 1731.	3.6	16
16	Transplant International: a new beginning. Transplant International, 2021, 34, 1586-1587.	1.6	2
17	"Human iPSC-derived kidney organoids towards clinical implementations― Current Opinion in Biomedical Engineering, 2021, 20, 100346.	3.4	4
18	Human soluble ACE2 improves the effect of remdesivir in SARSâ€CoVâ€2 infection. EMBO Molecular Medicine, 2021, 13, e13426.	6.9	87

#	Article	IF	CITATIONS
19	Directed Differentiation of Human Pluripotent Stem Cells for the Generation of High-Order Kidney Organoids. Methods in Molecular Biology, 2021, 2258, 171-192.	0.9	2
20	Bioelectronic Recordings of Cardiomyocytes with Accumulation Mode Electrolyte Gated Organic Field Effect Transistors. Biosensors and Bioelectronics, 2020, 150, 111844.	10.1	36
21	Human recombinant soluble ACE2 in severe COVID-19. Lancet Respiratory Medicine,the, 2020, 8, 1154-1158.	10.7	340
22	Transplantation Induces Profound Changes in the Transcriptional Asset of Hematopoietic Stem Cells: Identification of Specific Signatures Using Machine Learning Techniques. Journal of Clinical Medicine, 2020, 9, 1670.	2.4	4
23	The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting. Transplant International, 2020, 33, 833-840.	1.6	15
24	Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell, 2020, 181, 905-913.e7.	28.9	1,827
25	Multi-cellular engineered living systems: building a community around responsible research on emergence. Biofabrication, 2019, 11, 043001.	7.1	13
26	Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nature Materials, 2019, 18, 397-405.	27.5	201
27	Application of Gene-Editing Technologies in Embryos and Their Potential for Gene Therapy. , 2019, , 659-676.		1
28	Roadblocks in the Path of iPSC to the Clinic. Current Transplantation Reports, 2018, 5, 14-18.	2.0	30
29	Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells. Nephron, 2018, 138, 48-59.	1.8	10
30	Modeling epigenetic modifications in renal development and disease with organoids and genome editing. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	17
31	Active superelasticity in three-dimensional epithelia of controlled shape. Nature, 2018, 563, 203-208.	27.8	223
32	Forty years of IVF. Fertility and Sterility, 2018, 110, 185-324.e5.	1.0	211
33	Gene Editing Nuclear and Mitochondrial DNA. , 2018, , 409-414.		0
34	At the Heart of Genome Editing and Cardiovascular Diseases. Circulation Research, 2018, 123, 221-223.	4.5	6
35	Non-coding microRNAs for cardiac regeneration: Exploring novel alternatives to induce heart healing. Non-coding RNA Research, 2017, 2, 93-99.	4.6	5
36	Lineage Reprogramming Toward Kidney Regeneration. , 2017, , 1167-1175.		0

#	Article	IF	CITATIONS
37	Pluripotent Stem Cells and Skeletal Muscle Differentiation: Challenges and Immediate Applications. , 2017, , 1-35.		0
38	Regenerative strategies for kidney engineering. FEBS Journal, 2016, 283, 3303-3324.	4.7	34
39	Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 199, 67-73.	1.6	24
40	Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts. Biomaterials, 2016, 98, 64-78.	11.4	52
41	Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing. Cell, 2015, 161, 459-469.	28.9	245
42	Efficient Delivery and Functional Expression of Transfected Modified mRNA in Human Embryonic Stem Cell-derived Retinal Pigmented Epithelial Cells. Journal of Biological Chemistry, 2015, 290, 5661-5672.	3.4	22
43	Hypoxia Drives Breast Tumor Malignancy through a TET–TNFα–p38–MAPK Signaling Axis. Cancer Research, 2015, 75, 3912-3924.	0.9	108
44	Direct reprogramming of porcine fibroblasts to neural progenitor cells. Protein and Cell, 2014, 5, 4-7.	11.0	12
45	Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein and Cell, 2014, 5, 48-58.	11.0	69
46	Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein and Cell, 2014, 5, 59-68.	11.0	26
47	InÂVivo Activation of a Conserved MicroRNA Program Induces Mammalian Heart Regeneration. Cell Stem Cell, 2014, 15, 589-604.	11.1	178
48	Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nature Communications, 2014, 5, 4330.	12.8	102
49	Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein and Cell, 2014, 5, 48.	11.0	6
50	Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers. Cell Stem Cell, 2013, 13, 341-350.	11.1	137
51	Analysis of protein-coding mutations in hiPSCs and their possible role during somatic cell reprogramming. Nature Communications, 2013, 4, 1382.	12.8	58
52	Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine. Seminars in Reproductive Medicine, 2013, 31, 082-094.	1.1	65
53	Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nature Cell Biology, 2013, 15, 1507-1515.	10.3	316
54	Mcad-mediated intercellular interactions activate satellite cell division. Journal of Cell Science, 2013, 126, 5116-31.	2.0	15

#	Article	IF	CITATIONS
55	Conversion of human fibroblasts to angioblast-like progenitor cells. Nature Methods, 2013, 10, 77-83.	19.0	140
56	Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein and Cell, 2013, 5, 59.	11.0	3
57	M-cadherin-mediated intercellular interactions activate satellite cell division. Development (Cambridge), 2013, 140, e2407-e2407.	2.5	0
58	Accumulation of instability in serial differentiation and reprogramming of parthenogenetic human cells. Human Molecular Genetics, 2012, 21, 3366-3373.	2.9	9
59	Generation of Feeder-Free Pig Induced Pluripotent Stem Cells without Pou5f1. Cell Transplantation, 2012, 21, 815-825.	2.5	54
60	Cardiosphere-derived cells for heart regeneration. Lancet, The, 2012, 379, 2425-2426.	13.7	5
61	Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells. Journal of Biological Chemistry, 2012, 287, 40767-40778.	3.4	17
62	Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16196-16201.	7.1	152
63	Epithelial to mesenchymal transition in early stage endometrioid endometrial carcinoma. Human Pathology, 2012, 43, 632-643.	2.0	75
64	Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 2012, 491, 603-607.	27.8	312
65	Metabolic Effects of Insulin and IGFs on Gilthead Sea Bream (Sparus aurata) Muscle Cells. Frontiers in Endocrinology, 2012, 3, 55.	3.5	41
66	Generation of Induced Pluripotent Stem Cells from Human Renal Proximal Tubular Cells with Only Two Transcription Factors, Oct4 and Sox2. Journal of Biological Chemistry, 2012, 287, 24131-24138.	3.4	59
67	Simple Generation of Human Induced Pluripotent Stem Cells Using Poly-β-amino Esters As the Non-viral Gene Delivery System. Journal of Biological Chemistry, 2011, 286, 12417-12428.	3.4	68
68	Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal carcinomas of the breast: a cooperative effort?. Human Pathology, 2011, 42, 103-110.	2.0	76
69	Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011, 471, 63-67.	27.8	1,147
70	Generation of Pig iPS Cells: A Model for Cell Therapy. Journal of Cardiovascular Translational Research, 2011, 4, 121-130.	2.4	84
71	Complete Meiosis from Human Induced Pluripotent Stem Cells. Stem Cells, 2011, 29, 1186-1195.	3.2	177
72	Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nature Protocols, 2010, 5, 811-820.	12.0	94

#	Article	IF	CITATIONS
73	Understanding the molecular basis for cardiomyocyte cell cycle regulation: new insights in cardiac regeneration after injury?. Expert Review of Cardiovascular Therapy, 2010, 8, 1043-1045.	1.5	1
74	Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell, 2009, 5, 353-357.	11.1	392
75	Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways. General and Comparative Endocrinology, 2008, 157, 116-124.	1.8	97
76	Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during the compensatory growth of gilthead sea bream (Sparus aurata). Aquaculture, 2007, 267, 188-198.	3.5	49
77	Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 2007, 150, 462-472.	1.8	115
78	IGF-I binding and receptor signal transduction in primary cell culture of muscle cells of gilthead sea bream: changes throughout in vitro development. Cell and Tissue Research, 2007, 330, 503-513.	2.9	56
79	Bacterial lipopolysaccharide induces apoptosis in the trout ovary. Reproductive Biology and Endocrinology, 2006, 4, 46.	3.3	43
80	Coordinated regulation of the GH/IGF system genes during refeeding in rainbow trout (Oncorhynchus) Tj ETQqO	0 0 rgBT /0 2.6	Overlock 10 T

81	Modulation of the steroidogenic activity of luteinizing hormone by insulin and insulin-like growth factor-I through interaction with the cAMP-dependent protein kinase signaling pathway in the trout ovary. Molecular and Cellular Endocrinology, 2005, 229, 49-56.	3.2	25
82	Effects of follicle stimulating hormone on estradiol-17β production and P-450 aromatase (CYP19) activity and mRNA expression in brown trout vitellogenic ovarian follicles in vitro. General and Comparative Endocrinology, 2004, 137, 123-131.	1.8	75
83	Research on Skeletal Muscle Diseases Using Pluripotent Stem Cells. , 0, , .		0