Ahmad S Amin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161889/publications.pdf

Version: 2024-02-01

48 papers

2,733 citations

236925 25 h-index 43 g-index

48 all docs 48 docs citations

48 times ranked

3304 citing authors

#	Article	IF	CITATIONS
1	Drugs and Brugada syndrome patients: Review of the literature, recommendations, and an up-to-date website (www.brugadadrugs.org). Heart Rhythm, 2009, 6, 1335-1341.	0.7	342
2	An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation, 2020, 141, 418-428.	1.6	238
3	Clinical Spectrum of SCN5A Mutations. JACC: Clinical Electrophysiology, 2018, 4, 569-579.	3.2	198
4	Cardiac sodium channelopathies. Pflugers Archiv European Journal of Physiology, 2010, 460, 223-237.	2.8	173
5	Cardiac ion channels in health and disease. Heart Rhythm, 2010, 7, 117-126.	0.7	173
6	RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling. Circulation, 2018, 138, 1330-1342.	1.6	152
7	Fever Increases the Risk for Cardiac Arrest in the Brugada Syndrome. Annals of Internal Medicine, 2008, 149, 216.	3.9	131
8	Variants in the $3\hat{a}\in^2$ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. European Heart Journal, 2012, 33, 714-723.	2.2	130
9	Exercise-Induced ECG Changes in Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 531-539.	4.8	99
10	Genetically Determined Differences in Sodium Current Characteristics Modulate Conduction Disease Severity in Mice With Cardiac Sodium Channelopathy. Circulation Research, 2009, 104, 1283-1292.	4.5	86
11	Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart, 2022, 108, 332-338.	2.9	73
12	Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome. Journal of Clinical Investigation, 2008, 118, 2552-61.	8.2	73
13	Tubulin polymerization modifies cardiac sodium channel expression and gating. Cardiovascular Research, 2010, 85, 691-700.	3.8	68
14	Prognostic significance of fever-induced Brugada syndrome. Heart Rhythm, 2016, 13, 1515-1520.	0.7	68
15	Recurrent intrauterine fetal loss due to near absence of HERG: Clinical and functional characterization of a homozygous nonsense HERG Q1070X mutation. Heart Rhythm, 2008, 5, 553-561.	0.7	58
16	Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genetics in Medicine, 2021, 23, 47-58.	2.4	57
17	Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death. European Heart Journal, 2022, 43, 1500-1510.	2.2	57
18	Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. European Heart Journal, 2019, 40, 3097-3107.	2.2	55

#	Article	IF	Citations
19	Long QT syndrome: beyond the causal mutation. Journal of Physiology, 2013, 591, 4125-4139.	2.9	53
20	Novel Brugada syndromeâ€causing mutation in ionâ€conducting pore of cardiac Na ⁺ channel does not affect ion selectivity properties. Acta Physiologica Scandinavica, 2005, 185, 291-301.	2.2	51
21	Fever-triggered ventricular arrhythmias in Brugada syndrome and type 2 long-QT syndrome. Netherlands Heart Journal, 2010, 18, 165-169.	0.8	47
22	Sudden cardiac arrest associated with use of a non-cardiac drug that reduces cardiac excitability: evidence from bench, bedside, and community. European Heart Journal, 2013, 34, 1506-1516.	2.2	47
23	An intronic mutation leading to incomplete skipping of exon-2 in KCNQ1 rescues hearing in Jervell and Lange-Nielsen syndrome. Progress in Biophysics and Molecular Biology, 2008, 98, 319-327.	2.9	44
24	Facilitatory and inhibitory effects of SCN5A mutations on atrial fibrillation in Brugada syndrome. Europace, 2011, 13, 968-975.	1.7	38
25	Yield and Pitfalls of Ajmaline Testing in theÂEvaluation of Unexplained Cardiac Arrest and Sudden Unexplained Death. JACC: Clinical Electrophysiology, 2017, 3, 1400-1408.	3.2	34
26	Disease Modifiers of Inherited SCN5A Channelopathy. Frontiers in Cardiovascular Medicine, 2018, 5, 137.	2.4	28
27	Improving electrocardiogram-based detection of rare genetic heart disease using transfer learning: An application to phospholamban p.Arg14del mutation carriers. Computers in Biology and Medicine, 2021, 131, 104262.	7.0	28
28	Computer versus cardiologist: Is a machine learning algorithm able to outperform an expert in diagnosing a phospholamban p.Arg14del mutation on the electrocardiogram?. Heart Rhythm, 2021, 18, 79-87.	0.7	26
29	Common and rare susceptibility genetic variants predisposing to Brugada syndrome in Thailand. Heart Rhythm, 2020, 17, 2145-2153.	0.7	23
30	SCN5A mutation type and topology are associated with the risk of ventricular arrhythmia by sodium channel blockers. International Journal of Cardiology, 2018, 266, 128-132.	1.7	21
31	SCN5A-related dilated cardiomyopathy: What do we know?. Heart Rhythm, 2014, 11, 1454-1455.	0.7	15
32	Clinical applicability of artificial intelligence for patients with an inherited heart disease: A scoping review. Trends in Cardiovascular Medicine, 2023, 33, 274-282.	4.9	6
33	SCN5A mutations in atrial fibrillation. Heart Rhythm, 2010, 7, 1870-1871.	0.7	5
34	Genetic Control of Potassium Channels. Cardiac Electrophysiology Clinics, 2016, 8, 285-306.	1.7	5
35	The future of sudden cardiac death research. Progress in Pediatric Cardiology, 2017, 45, 49-54.	0.4	5
36	Echocardiographic deformation imaging unmasks global and regional mechanical dysfunction in patients with idiopathic ventricular fibrillation: AÂmulticenter case-control study. Heart Rhythm, 2021, 18, 1666-1672.	0.7	5

#	Article	IF	CITATIONS
37	Left Axis Deviation in Brugada Syndrome: Vectorcardiographic Evaluation during Ajmaline Provocation Testing Reveals Additional Depolarization Abnormalities. International Journal of Molecular Sciences, 2021, 22, 484.	4.1	5
38	SCN5a overlap syndromes—This episode: Long QT syndrome type 3 meets multifocal ectopic Purkinje-related premature contractions. Heart Rhythm, 2020, 17, 1777-1778.	0.7	4
39	Genetic screening in acquired long QT syndrome? CAUTION: proceed carefully. European Heart Journal, 2016, 37, 1465-1468.	2.2	3
40	The \hat{l}^2 -angle can help guide clinical decisions in the diagnostic work-up of patients suspected of Brugada syndrome: a validation study of the \hat{l}^2 -angle in determining the outcome of a sodium channel provocation test. Europace, 2021, 23, 2020-2028.	1.7	3
41	Letter by Amin et al Regarding Article, "Genetic Modifiers for the Long-QT Syndrome: How Important Is the Role of Variants in the 3′ Untranslated Region of KCNQ1?― Circulation: Cardiovascular Genetics, 2016, 9, 580-580.	5.1	2
42	Coronary ectasia and repeated myocardial infarction in a young man. International Journal of Cardiology, 2014, 171, e74-e75.	1.7	1
43	The phenotype is equally important in promoting variants from benign to pathogenic as well as in demoting variants from pathogenic to benign. Heart Rhythm, 2018, 15, 562-563.	0.7	1
44	Inheritable Potassium Channel Diseases. , 2018, , 494-503.		1
45	European Reference Network for rare, low prevalence, or complex diseases of the heart (ERN) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10
46	Response to letter from Drs. Li et al. regarding our paper in Int. J. Cardiol. 2018. Doi: 10.1016/j.ijcard.2017.09.010: SCN5A mutation type and topology are associated with the risk of ventricular arrhythmia by sodium channel blockers. International Journal of Cardiology, 2018, 271, 124.	1.7	0
47	P4373Post systolic shortening in the apex of the left ventricular is a typical finding in patients with PLN mutation. European Heart Journal, 2019, 40, .	2.2	0
48	Patients with a DPP6 risk-haplotype for familial idiopathic ventricular fibrillation have normal left systolic function but abnormal deformation. European Heart Journal Cardiovascular Imaging, 2021, 22, .	1.2	0