Stefano Piccolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single cell-derived spheroids capture the self-renewing subpopulations of metastatic ovarian cancer. Cell Death and Differentiation, 2022, 29, 614-626.	11.2	20
2	Mechanosignaling in vertebrate development. Developmental Biology, 2022, 488, 54-67.	2.0	12
3	A YAP/TAZ-TEAD signalling module links endothelial nutrient acquisition to angiogenic growth. Nature Metabolism, 2022, 4, 672-682.	11.9	20
4	YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS–STING. Nature, 2022, 607, 790-798.	27.8	89
5	Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in glioblastoma. Nature Cancer, 2021, 2, 174-188.	13.2	83
6	Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nature Communications, 2021, 12, 2340.	12.8	43
7	Mechanisms of YAP/TAZ transcriptional control. Cell Stress, 2021, 5, 167-172.	3.2	25
8	Simple yet effective methods to probe hydrogel stiffness for mechanobiology. Scientific Reports, 2021, 11, 22668.	3.3	9
9	Broadly Applicable Hydrogel Fabrication Procedures Guided by Yap/Tazâ€Activity Reveal Stiffness, Adhesiveness and Nuclear Projected Area as Checkpoints for Mechanosensing. Advanced Healthcare Materials, 2021, , 2102276.	7.6	4
10	Linking cancer transcriptional addictions by CDK7 to YAP/TAZ. Genes and Development, 2020, 34, 4-6.	5.9	3
11	ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nature Communications, 2020, 11, 4828.	12.8	60
12	Disabled Homolog 2 Controls Prometastatic Activity of Tumor-Associated Macrophages. Cancer Discovery, 2020, 10, 1758-1773.	9.4	44
13	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
14	GSK3 Inhibits Macropinocytosis and Lysosomal Activity through the Wnt Destruction Complex Machinery. Cell Reports, 2020, 32, 107973.	6.4	52
15	Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nature Materials, 2020, 19, 797-806.	27.5	140
16	Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17848-17857.	7.1	98
17	YAP and TAZ: a signalling hub of the tumour microenvironment. Nature Reviews Cancer, 2019, 19, 454-464.	28.4	252
18	Phosphatidic Acid Enters into the YAP/TAZ Arena. Trends in Molecular Medicine, 2019, 25, 5-7.	6.7	2

#	Article	IF	CITATIONS
19	Crosstalk between YAP/TAZ and Notch Signaling. Trends in Cell Biology, 2018, 28, 560-573.	7.9	104
20	YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell, 2018, 22, 35-49.e7.	11.1	447
21	Mechanical cues control mutant p53 stability through a mevalonate–RhoA axis. Nature Cell Biology, 2018, 20, 28-35.	10.3	104
22	Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nature Materials, 2018, 17, 1063-1075.	27.5	181
23	The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature, 2018, 563, 265-269.	27.8	224
24	Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nature Medicine, 2018, 24, 1599-1610.	30.7	228
25	YAP/TAZ upstream signals and downstream responses. Nature Cell Biology, 2018, 20, 888-899.	10.3	647
26	De Novo Generation of Somatic Stem Cells by YAP/TAZ. Journal of Visualized Experiments, 2018, , .	0.3	2
27	Size in development. Development Growth and Differentiation, 2017, 59, 3-3.	1.5	0
28	A TIAM Double Hit to Oppose YAP/TAZ. Cancer Cell, 2017, 31, 607-608.	16.8	3
29	YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nature Communications, 2017, 8, 15206.	12.8	225
30	Mechanobiology of YAP and TAZ in physiology and disease. Nature Reviews Molecular Cell Biology, 2017, 18, 758-770.	37.0	879
31	Redox status in a model of cancer stem cells. Archives of Biochemistry and Biophysics, 2017, 617, 120-128.	3.0	10
32	YAP/TAZ as therapeutic targets in cancer. Current Opinion in Pharmacology, 2016, 29, 26-33.	3.5	174
33	Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ. Cell Stem Cell, 2016, 19, 725-737.	11.1	204
34	YAP/TAZ at the Roots of Cancer. Cancer Cell, 2016, 29, 783-803.	16.8	1,409
35	Eradicating tumor drug resistance at its <scp>YAP</scp> â€biomechanical roots. EMBO Journal, 2016, 35, 459-461.	7.8	22
36	The apical ectodermal ridge of the mouse model of ectrodactylyDlx5;Dlx6â^'/â^'shows altered stratification and cell polarity, which are restored by exogenous Wnt5a ligand. Human Molecular Genetics, 2016, 25, 740-754.	2.9	13

#	Article	IF	CITATIONS
37	Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nature Cell Biology, 2016, 18, 168-180.	10.3	127
38	Monitoring Smad Activity In Vivo Using the Xenopus Model System. Methods in Molecular Biology, 2016, 1344, 245-259.	0.9	12
39	Genome-wide association between YAP/TAZ/TEAD andÂAP-1 at enhancers drives oncogenic growth. Nature Cell Biology, 2015, 17, 1218-1227.	10.3	865
40	Yoshiki Sasai: stem cell Sensei. Development (Cambridge), 2014, 141, 3613-3614.	2.5	2
41	Editorial overview: Cell cycle, differentiation and disease. Current Opinion in Cell Biology, 2014, 31, v-vi.	5.4	0
42	Metabolic control of YAP and TAZ by the mevalonate pathway. Nature Cell Biology, 2014, 16, 357-366.	10.3	630
43	Twists of Fate. Scientific American, 2014, 311, 74-81.	1.0	3
44	YAP/TAZ Incorporation in the \hat{I}^2 -Catenin Destruction Complex Orchestrates the Wnt Response. Cell, 2014, 158, 157-170.	28.9	873
45	The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiological Reviews, 2014, 94, 1287-1312.	28.8	1,336
46	Ever developing TGF-Î ² . Seminars in Cell and Developmental Biology, 2014, 32, 71-72.	5.0	0
47	Targeting triple negative breast cancer: Is p53 the answer?. Cancer Treatment Reviews, 2013, 39, 541-550.	7.7	106
48	A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors. Cell, 2013, 154, 1047-1059.	28.9	1,278
49	Embracing mechanical forces in cell biology. Differentiation, 2013, 86, 75-76.	1.9	7
50	p63, Sharp1, and HIFs: Master Regulators of Metastasis in Triple-Negative Breast Cancer. Cancer Research, 2013, 73, 4978-4981.	0.9	20
51	Mechanics in the embryo. Nature, 2013, 504, 223-225.	27.8	20
52	BMP signaling controls muscle mass. Nature Genetics, 2013, 45, 1309-1318.	21.4	379
53	Molecular Pathways: YAP and TAZ Take Center Stage in Organ Growth and Tumorigenesis. Clinical Cancer Research, 2013, 19, 4925-4930.	7.0	135

Regulation of YAP and TAZ by Epithelial Plasticity. , 2013, , 89-113.

1

#	Article	IF	CITATIONS
55	Unilateral rosacea in patients with facial nerve palsy: A mere example of immunocompromised district. Journal of Dermatology, 2013, 40, 850-850.	1.2	9
56	Epithelial–mesenchymal transition in malignant mesothelioma. Modern Pathology, 2012, 25, 86-99.	5.5	130
57	Self-regulation of the head-inducing properties of the Spemann organizer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15354-15359.	7.1	24
58	Fat facets deubiquitylation of Medea/Smad4 modulates interpretation of a Dpp morphogen gradient. Development (Cambridge), 2012, 139, 2721-2729.	2.5	22
59	Role of TAZ as Mediator of Wnt Signaling. Cell, 2012, 151, 1443-1456.	28.9	419
60	Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature Reviews Molecular Cell Biology, 2012, 13, 591-600.	37.0	788
61	LIF-ting Hippo averts metastasis. Nature Medicine, 2012, 18, 1463-1465.	30.7	12
62	SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature, 2012, 487, 380-384.	27.8	213
63	miRNAs and morphogen gradients. Current Opinion in Cell Biology, 2012, 24, 194-201.	5.4	22
64	USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nature Cell Biology, 2011, 13, 1368-1375.	10.3	182
65	The Hippo Transducer TAZ Confers Cancer Stem Cell-Related Traits on Breast Cancer Cells. Cell, 2011, 147, 759-772.	28.9	1,115
66	Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474, 179-183.	27.8	4,288
67	Fearlessly tackling the organizer. Nature Reviews Molecular Cell Biology, 2011, 12, 282-282.	37.0	0
68	MicroRNA control of signal transduction. Nature Reviews Molecular Cell Biology, 2010, 11, 252-263.	37.0	1,145
69	Negative control of Smad activity by ectodermin/Tif1γ patterns the mammalian embryo. Development (Cambridge), 2010, 137, 2571-2578.	2.5	79
70	A MicroRNA Targeting Dicer for Metastasis Control. Cell, 2010, 141, 1195-1207.	28.9	619
71	Reciprocal Requirements for EDA/EDAR/NF-I®B and Wnt/β-Catenin Signaling Pathways in Hair Follicle Induction. Developmental Cell, 2009, 17, 49-61.	7.0	310
72	FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination. Cell, 2009, 136, 123-135.	28.9	442

#	Article	IF	CITATIONS
73	A Mutant-p53/Smad Complex Opposes p63 to Empower TGFβ-Induced Metastasis. Cell, 2009, 137, 87-98.	28.9	717
74	β-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development (Cambridge), 2009, 136, 2505-2510.	2.5	165
75	Wnt/β-catenin signaling directs multiple stages of tooth morphogenesis. Developmental Biology, 2008, 313, 210-224.	2.0	340
76	p53 Regulation Orchestrates the TGF-Î ² Response. Cell, 2008, 133, 767-769.	28.9	29
77	Activation of β-catenin signaling programs embryonic epidermis to hair follicle fate. Development (Cambridge), 2008, 135, 2161-2172.	2.5	179
78	Activation of the Wnt ÂCatenin Pathway in a Cell Population on the Surface of the Forebrain Is Essential for the Establishment of Olfactory Axon Connections. Journal of Neuroscience, 2007, 27, 9757-9768.	3.6	41
79	Integration of TGF-Â and Ras/MAPK Signaling Through p53 Phosphorylation. Science, 2007, 315, 840-843.	12.6	199
80	Developmental phenotypes and reduced Wnt signaling in mice deficient forpygopus 2. Genesis, 2007, 45, 318-325.	1.6	54
81	MicroRNA control of Nodal signalling. Nature, 2007, 449, 183-188.	27.8	177
82	Emilin1 Links TGF-Î ² Maturation to Blood Pressure Homeostasis. Cell, 2006, 124, 929-942.	28.9	274
83	Identification of New p63 Targets in Human Keratinocytes. Cell Cycle, 2006, 5, 2805-2811.	2.6	41
84	The Wnt/β-catenin pathway regulates Gli-mediated Myf5expression during somitogenesis. Development (Cambridge), 2006, 133, 3723-3732.	2.5	159
85	Cooperating pre–T-cell receptor and TCF-1–dependent signals ensure thymocyte survival. Blood, 2005, 106, 1726-1733.	1.4	61
86	Germ-Layer Specification and Control of Cell Growth by Ectodermin, a Smad4 Ubiquitin Ligase. Cell, 2005, 121, 87-99.	28.9	316
87	Wnt/β-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal–distal patterning in the lung. Developmental Biology, 2005, 283, 226-239.	2.0	286
88	β-Catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. Journal of Cell Biology, 2004, 166, 359-367.	5.2	344
89	Glycogen Synthase Kinase-3β Haploinsufficiency Mimics the Behavioral and Molecular Effects of Lithium. Journal of Neuroscience, 2004, 24, 6791-6798.	3.6	411
90	Convergence of p53 and TGF-beta signaling networks. Cancer Letters, 2004, 213, 129-138.	7.2	66

#	Article	IF	CITATIONS
91	Links between Tumor Suppressors. Cell, 2003, 113, 301-314.	28.9	361
92	Mapping Wnt/l²-catenin signaling during mouse development and in colorectal tumors. Proceedings of the United States of America, 2003, 100, 3299-3304.	7.1	730
93	Cell Type-specific Transcription of the α1(VI) Collagen Gene. Journal of Biological Chemistry, 1999, 274, 1759-1766.	3.4	15
94	The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature, 1999, 397, 707-710.	27.8	768
95	L'inducteur céphalique Cerberus est un inhibiteur multivalent extracellulaire. Société De Biologie Journal, 1999, 193, 347-354.	0.3	4
96	Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Human Molecular Genetics, 1998, 7, 2135-2140.	2.9	260
97	Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity. Cell, 1997, 91, 407-416.	28.9	384
98	Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer. Cell, 1997, 88, 747-756.	28.9	663
99	Tissue-Specific Expression of Promoter Regions of the alphar1(VI) Collagen Gene in Cell Cultures and Transgenic Mice. FEBS Journal, 1997, 247, 200-208.	0.2	13
100	Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4. Cell, 1996, 86, 589-598.	28.9	1,032
101	Identification of a recognition element for CAAT-enhancer binding proteins (C/EBPs) in the elastin promoter. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1264, 40-44.	2.4	1
102	Transcriptional Activation of the α1(VI) Collagen Gene during Myoblast Differentiation Is Mediated by Multiple GA Boxes. Journal of Biological Chemistry, 1995, 270, 19583-19590.	3.4	27
103	Murine α1(VI) Collagen Chain. Complete Amino Acid Sequence and Identification of the Gene Promoter Region. Matrix Biology, 1993, 13, 223-233.	1.7	17