Tanya Spero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Surface PM _{2.5} Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 2. Bias Correction With Satellite Data for Rural Areas. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
2	Development and evaluation of an advanced National Air Quality Forecasting Capability using the NOAA Global Forecast System version 16. Geoscientific Model Development, 2022, 15, 3281-3313.	3.6	8
3	Highâ€resolution dynamically downscaled rainfall and temperature projections for ecological life zones within Puerto Rico and for the U.S. Virgin Islands. International Journal of Climatology, 2021, 41, 1305-1327.	3.5	8
4	Projecting changes in extreme rainfall from three tropical cyclones using the design-rainfall approach. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	2
5	The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation. Geoscientific Model Development, 2021, 14, 2867-2897.	3.6	114
6	Regional temperature-ozone relationships across the U.S. under multiple climate and emissions scenarios. Journal of the Air and Waste Management Association, 2021, 71, 1251-1264.	1.9	19
7	Projecting changes in extreme rainfall from three tropical cyclones using the design-rainfall approach. Nature Climate Change, 2021, 4, 1-8.	18.8	0
8	Improving Surface PM _{2.5} Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 1. Bias Correction With Surface Observations in Nonrural Areas. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032293.	3.3	16
9	Ozone-related asthma emergency department visits in the US in a warming climate. Environmental Research, 2020, 183, 109206.	7.5	12
10	Data Availability Principles and Practice. Weather, Climate, and Society, 2020, 12, 647-649.	1.1	5
11	Effects of Mosaic Land Use on Dynamically Downscaled WRF Simulations of the Contiguous United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9117-9140.	3.3	10
12	Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and background ozone: CMAQ simulations over the Northern Hemisphere. Atmospheric Environment, 2019, 213, 395-404.	4.1	29
13	Projections of Atmospheric Nitrogen Deposition to the Chesapeake Bay Watershed. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3307-3326.	3.0	7
14	Projected Changes in Maternal Heat Exposure During Early Pregnancy and the Associated Congenital Heart Defect Burden in the United States. Journal of the American Heart Association, 2019, 8, e010995.	3.7	41
15	Updates to the Noah Land Surface Model in WRF MAQ to Improve Simulated Meteorology, Air Quality, and Deposition. Journal of Advances in Modeling Earth Systems, 2019, 11, 231-256.	3.8	39
16	Developing PIDF Curves From Dynamically Downscaled WRF Model Fields to Examine Extreme Precipitation Events in Three Eastern U.S. Metropolitan Areas. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13895-13913.	3.3	6
17	Attributing differences in the fate of lateral boundary ozone in AQMEII3 models to physical process representations. Atmospheric Chemistry and Physics, 2018, 18, 17157-17175.	4.9	5
18	The potential effects of climate change on air quality across the conterminousÂUS atÂ2030 under three Representative Concentration Pathways. Atmospheric Chemistry and Physics, 2018, 18, 15471-15489.	4.9	33

TANYA SPERO

#	Article	IF	CITATIONS
19	Examining WRF's Sensitivity to Contemporary Land-Use Datasets across the Contiguous United States Using Dynamical Downscaling. Journal of Applied Meteorology and Climatology, 2018, 57, 2561-2583.	1.5	12
20	A Maieutic Exploration of Nudging Strategies for Regional Climate Applications Using the WRF Model. Journal of Applied Meteorology and Climatology, 2018, 57, 1883-1906.	1.5	17
21	Characterizing the impact of projected changes in climate and air quality on human exposures to ozone. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 260-270.	3.9	15
22	Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: overview of process considerations and initial applications. Atmospheric Chemistry and Physics, 2017, 17, 12449-12474.	4.9	83
23	Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geoscientific Model Development, 2017, 10, 1703-1732.	3.6	187
24	Assessing the Added Value of Dynamical Downscaling Using the Standardized Precipitation Index. Advances in Meteorology, 2016, 2016, 1-14.	1.6	13
25	Evaluation of near surface ozone and particulate matter in air quality simulations driven by dynamically downscaled historical meteorological fields. Atmospheric Environment, 2016, 138, 42-54.	4.1	6
26	The Impact of Incongruous Lake Temperatures on Regional Climate Extremes Downscaled from the CMIP5 Archive Using the WRF Model. Journal of Climate, 2016, 29, 839-853.	3.2	24
27	The geographic distribution and economic value of climate change-related ozone health impacts in the United States in 2030. Journal of the Air and Waste Management Association, 2015, 65, 570-580.	1.9	85
28	Technical challenges and solutions in representing lakes when using WRF in downscaling applications. Geoscientific Model Development, 2015, 8, 1085-1096.	3.6	39
29	Increasing the credibility of regional climate simulations by introducing subgridâ€scale cloudâ€radiation interactions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5317-5330.	3.3	50
30	An Observation-Based Investigation of Nudging in WRF for Downscaling Surface Climate Information to 12-km Grid Spacing. Journal of Applied Meteorology and Climatology, 2014, 53, 20-33.	1.5	47
31	Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,682-11,694.	3.3	36
32	Using a coupled lake model with WRF for dynamical downscaling. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7193-7208.	3.3	58
33	Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology. Climate Dynamics, 2013, 40, 1903-1920.	3.8	56
34	Does Nudging Squelch the Extremes in Regional Climate Modeling?. Journal of Climate, 2012, 25, 7046-7066.	3.2	111
35	WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results. Geoscientific Model Development, 2012, 5, 299-312.	3.6	193
36	Introducing subgridâ€scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophysical Research Letters, 2012, 39, .	4.0	86

TANYA SPERO

#	Article	IF	CITATIONS
37	Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling. Journal of Climate, 2012, 25, 2805-2823.	3.2	116
38	Diagnostic analysis of ozone concentrations simulated by two regional-scale air quality models. Atmospheric Environment, 2011, 45, 5957-5969.	4.1	23
39	Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geoscientific Model Development, 2010, 3, 205-226.	3.6	404
40	Using National Air Quality Forecast Guidance to Develop Local Air Quality Index Forecasts. Bulletin of the American Meteorological Society, 2010, 91, 313-326.	3.3	31
41	The impact of chemical lateral boundary conditions on CMAQ predictions of tropospheric ozone over the continental United States. Environmental Fluid Mechanics, 2009, 9, 43-58.	1.6	72
42	The Impact of Nudging in the Meteorological Model for Retrospective Air Quality Simulations. Part II: Evaluating Collocated Meteorological and Air Quality Observations. Journal of Applied Meteorology and Climatology, 2008, 47, 1868-1887.	1.5	35
43	The Impact of Nudging in the Meteorological Model for Retrospective Air Quality Simulations. Part I: Evaluation against National Observation Networks. Journal of Applied Meteorology and Climatology, 2008, 47, 1853-1867.	1.5	103
44	A detailed evaluation of the Eta-CMAQ forecast model performance for O3, its related precursors, and meteorological parameters during the 2004 ICARTT study. Journal of Geophysical Research, 2007, 112, .	3.3	95
45	Evaluating the use of outputs from comprehensive meteorological models in air quality modeling applications. Atmospheric Environment, 2007, 41, 1689-1705.	4.1	18
46	Linking the Eta Model with the Community Multiscale Air Quality (CMAQ) Modeling System to Build a National Air Quality Forecasting System. Weather and Forecasting, 2005, 20, 367-384.	1.4	143
47	Simulation of Meteorological Fields Within and Above Urban and Rural Canopies with a Mesoscale Model. Boundary-Layer Meteorology, 2004, 113, 111-158.	2.3	155
48	Implementation of an Urban Canopy Parameterization in a Mesoscale Meteorological Model. Journal of Applied Meteorology and Climatology, 2004, 43, 1648-1665.	1.7	79
49	Simulation at Neighborhood Scale with Cmaq. , 2004, , 441-449.		0
50	A Heuristic Study on the Importance of Anisotropic Error Distributions in Data Assimilation. Monthly Weather Review, 2001, 129, 766-783.	1.4	9
51	Title is missing!. Water, Air and Soil Pollution, 2001, 1, 243-252.	0.8	86