List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Arabidopsis</i> bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses Â. Plant Cell, 2011, 23, 701-715.	6.6	906
2	NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature, 2010, 464, 788-791.	27.8	832
3	The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. Plant Cell, 2011, 23, 3089-3100.	6.6	547
4	A specialized metabolic network selectively modulates <i>Arabidopsis</i> root microbiota. Science, 2019, 364, .	12.6	470
5	Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 2012, 17, 349-359.	8.8	467
6	Oleanolic acid. Phytochemistry, 2012, 77, 10-15.	2.9	403
7	Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59 Â Â. Plant Cell, 2013, 25, 744-761.	6.6	381
8	A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8595-8600.	7.1	378
9	Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured <i>Arabidopsis</i> cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1380-1385.	7.1	367
10	The seco-iridoid pathway from Catharanthus roseus. Nature Communications, 2014, 5, 3606.	12.8	355
11	Jasmonate-inducible gene: what does it mean?. Trends in Plant Science, 2009, 14, 87-91.	8.8	320
12	Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5614-5619.	7.1	307
13	Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology, 2016, 33, 147-156.	7.1	295
14	The Molecular Cloning of Artemisinic Aldehyde Δ11(13) Reductase and Its Role in Glandular Trichome-dependent Biosynthesis of Artemisinin in Artemisia annua. Journal of Biological Chemistry, 2008, 283, 21501-21508.	3.4	280
15	Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in <i>Nicotiana tabacum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2447-2452.	7.1	255
16	GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications, 2016, 7, 10654.	12.8	239
17	Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. Journal of Experimental Botany, 2005, 56, 2527-2538.	4.8	230
18	Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in <i>Arabidopsis</i> and tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5891-5896.	7.1	228

JONAS GOOSSENS

#	Article	IF	CITATIONS
19	Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature Plants, 2017, 3, 16205.	9.3	201
20	Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology <i>inAvivo</i> and <i>inÂvitro</i> . New Phytologist, 2013, 200, 27-43.	7.3	194
21	Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in <i>Artemisia annua</i> plants. New Phytologist, 2011, 189, 176-189.	7.3	192
22	APETALA2/ETHYLENE RESPONSE FACTOR and basic helix–loop–helix tobacco transcription factors cooperatively mediate jasmonateâ€elicited nicotine biosynthesis. Plant Journal, 2011, 66, 1053-1065.	5.7	191
23	Expression of the <i>Arabidopsis</i> jasmonate signalling repressor <i>JAZ1</i> / <i>TIFY10A</i> is stimulated by auxin. EMBO Reports, 2009, 10, 923-928.	4.5	184
24	The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in <i>Catharanthus roseus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8130-8135.	7.1	176
25	Combinatorial biosynthesis of sapogenins and saponins in <i>Saccharomyces cerevisiae</i> using a C-16α hydroxylase from <i>Bupleurum falcatum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1634-1639.	7.1	173
26	Regulation of Yeast H + -ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters. Molecular and Cellular Biology, 2000, 20, 7654-7661.	2.3	167
27	Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nature Biotechnology, 2002, 20, 1265-1268.	17.5	162
28	Role and functioning of bHLH transcription factors in jasmonate signalling. Journal of Experimental Botany, 2017, 68, erw440.	4.8	156
29	Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Molecular Biology, 2016, 91, 673-689.	3.9	155
30	The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in <i>Medicago truncatula</i> . Plant Physiology, 2016, 170, 194-210.	4.8	152
31	Lessons from Domestication: Targeting Cis -Regulatory Elements for Crop Improvement. Trends in Plant Science, 2016, 21, 506-515.	8.8	151
32	Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant Journal, 2005, 44, 1065-1076.	5.7	150
33	A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metabolic Engineering, 2017, 42, 185-193.	7.0	146
34	Abscisic Acid as Pathogen Effector and Immune Regulator. Frontiers in Plant Science, 2017, 8, 587.	3.6	145
35	Protein–Protein and Protein–Membrane Associations in the Lignin Pathway. Plant Cell, 2012, 24, 4465-4482	6.6	131
36	An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metabolic Engineering, 2017, 40, 165-175.	7.0	128

#	Article	IF	CITATIONS
37	The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nature Communications, 2017, 8, 14153.	12.8	128
38	The metabolic blueprint of <i>Phaeodactylum tricornutum</i> reveals a eukaryotic Entner–Doudoroff glycolytic pathway. Plant Journal, 2012, 70, 1004-1014.	5.7	124
39	A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp Biotechnology Advances, 2014, 32, 1157-1167.	11.7	123
40	A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis. Plant Cell, 2015, 27, 2273-2287.	6.6	118
41	CathaCyc, a Metabolic Pathway Database Built from Catharanthus roseus RNA-Seq Data. Plant and Cell Physiology, 2013, 54, 673-685.	3.1	116
42	Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. Journal of Plant Physiology, 2013, 170, 211-219.	3.5	113
43	Functional Specialization of the TRANSPARENT TESTA GLABRA1 Network Allows Differential Hormonal Control of Laminal and Marginal Trichome Initiation in Arabidopsis Rosette Leaves. Plant Physiology, 2008, 148, 1453-1464.	4.8	110
44	Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biology, 2013, 13, 220.	3.6	106
45	Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth. PLoS Genetics, 2015, 11, e1005300.	3.5	106
46	The protein quality control system manages plant defence compound synthesis. Nature, 2013, 504, 148-152.	27.8	99
47	The basic helixâ€loopâ€helix transcription factor <scp>BIS</scp> 2 is essential for monoterpenoid indole alkaloid production in the medicinal plant <i>Catharanthus roseus</i> . Plant Journal, 2016, 88, 3-12.	5.7	98
48	Metabolite Profiling of Triterpene Saponins in <i>Medicago truncatula</i> Hairy Roots by Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of Natural Products, 2011, 74, 1462-1476.	3.0	96
49	OSC2 and CYP716A14v2 Catalyze the Biosynthesis of Triterpenoids for the Cuticle of Aerial Organs of <i>Artemisia annua</i> . Plant Cell, 2015, 27, 286-301.	6.6	96
50	A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23345-23356.	7.1	95
51	Establishment of Proximity-Dependent Biotinylation Approaches in Different Plant Model Systems. Plant Cell, 2020, 32, 3388-3407.	6.6	91
52	It's Time for Some "Site―Seeing: Novel Tools to Monitor the Ubiquitin Landscape in <i>Arabidopsis thaliana</i> . Plant Cell, 2016, 28, 6-16.	6.6	84
53	Natural product biosynthesis in Medicago species. Natural Product Reports, 2014, 31, 356.	10.3	81
54	Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Science, 2016, 250, 188-197.	3.6	80

#	Article	IF	CITATIONS
55	Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. Journal of Experimental Botany, 2016, 67, 5825-5840.	4.8	78
56	The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. Plant Physiology, 2015, 169, 1405-1417.	4.8	76
57	Change of a conserved amino acid in the <scp>MYC</scp> 2 and <scp>MYC</scp> 3 transcription factors leads to release of <scp>JAZ</scp> repression and increased activity. New Phytologist, 2015, 206, 1229-1237.	7.3	75
58	Combinatorial Transcriptional Control of Plant Specialized Metabolism. Trends in Plant Science, 2018, 23, 324-336.	8.8	75
59	Tracking the sterol biosynthesis pathway of the diatom <i><scp>P</scp>haeodactylum tricornutum</i> . New Phytologist, 2014, 204, 521-535.	7.3	73
60	The Protein Kinase Gcn2p Mediates Sodium Toxicity in Yeast. Journal of Biological Chemistry, 2001, 276, 30753-30760.	3.4	71
61	Flux balance analysis of primary metabolism in the diatom <i>Phaeodactylum tricornutum</i> . Plant Journal, 2016, 85, 161-176.	5.7	70
62	An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metabolic Engineering, 2018, 48, 150-162.	7.0	70
63	Quantitation of artemisinin and its biosynthetic precursors in Artemisia annua L. by high performance liquid chromatography–electrospray quadrupole time-of-flight tandem mass spectrometry. Journal of Chromatography A, 2006, 1118, 180-187.	3.7	69
64	Analysis of RNA-Seq Data with TopHat and Cufflinks for Genome-Wide Expression Analysis of Jasmonate-Treated Plants and Plant Cultures. Methods in Molecular Biology, 2013, 1011, 305-315.	0.9	68
65	The arcelin-5 Gene of Phaseolus vulgarisDirects High Seed-Specific Expression in TransgenicPhaseolus acutifolius and Arabidopsis Plants1. Plant Physiology, 1999, 120, 1095-1104.	4.8	65
66	Hormone-mediated promotion of trichome initiation in plants is conserved but utilizes species and trichome-specific regulatory mechanisms. Plant Signaling and Behavior, 2010, 5, 205-207.	2.4	64
67	Combinatorial biosynthesis in plants: A (p)review on its potential and future exploitation. Natural Product Reports, 2011, 28, 1897.	10.3	64
68	The transcription factor bZIP14 regulates the TCA cycle in the diatom <i>Phaeodactylum tricornutum</i> . EMBO Journal, 2017, 36, 1559-1576.	7.8	64
69	A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nature Microbiology, 2019, 4, 226-233.	13.3	64
70	Unraveling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa lanceolata. Molecular Plant, 2015, 8, 122-135.	8.3	63
71	Involvement of the Leaf-Specific Multidrug and Toxic Compound Extrusion (MATE) Transporter Nt-JAT2 in Vacuolar Sequestration of Nicotine in Nicotiana tabacum. PLoS ONE, 2014, 9, e108789.	2.5	59
72	Secretion of Secondary Metabolites by ATP-Binding Cassette Transporters in Plant Cell Suspension Cultures. Plant Physiology, 2003, 131, 1161-1164.	4.8	58

JONAS GOOSSENS

#	Article	IF	CITATIONS
73	lridoid Synthase Activity Is Common among the Plant Progesterone 5β-Reductase Family. Molecular Plant, 2015, 8, 136-152.	8.3	57
74	The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor. PLoS ONE, 2014, 9, e84891.	2.5	55
75	Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry, 2007, 68, 2773-2785.	2.9	54
76	The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nature Communications, 2017, 8, 15235.	12.8	54
77	Synthetic biology for production of natural and newâ€ŧoâ€nature terpenoids in photosynthetic organisms. Plant Journal, 2016, 87, 16-37.	5.7	52
78	Predicting Gene Function from Uncontrolled Expression Variation among Individual Wild-Type <i>Arabidopsis</i> Plants. Plant Cell, 2013, 25, 2865-2877.	6.6	50
79	Arabidopsis Leaf Flatness Is Regulated by PPD2 and NINJA through Repression of <i>CYCLIN D3</i> Genes. Plant Physiology, 2018, 178, 217-232.	4.8	50
80	Comparative analysis of CYP93E proteins for improved microbial synthesis of plant triterpenoids. Phytochemistry, 2014, 108, 47-56.	2.9	46
81	STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007218.	3.5	45
82	The Ubiquitin System and Jasmonate Signaling. Plants, 2016, 5, 6.	3.5	43
83	Synthetic biology approaches for the production of plant metabolites in unicellular organisms. Journal of Experimental Botany, 2017, 68, 4057-4074.	4.8	42
84	Transcript profiling of jasmonateâ€elicited <i>Taxus</i> cells reveals a βâ€phenylalanine oA ligase. Plant Biotechnology Journal, 2016, 14, 85-96.	8.3	41
85	Identification of Four Adenosine Kinase Isoforms in Tobacco By-2 Cells and Their Putative Role in the Cell Cycle-regulated Cytokinin Metabolism. Journal of Biological Chemistry, 2005, 280, 17512-17519.	3.4	40
86	Transient Expression Assays in Tobacco Protoplasts. Methods in Molecular Biology, 2013, 1011, 227-239.	0.9	40
87	Profiling of the Early Nitrogen Stress Response in the Diatom <i>Phaeodactylum tricornutum</i> Reveals a Novel Family of RING-Domain Transcription Factors. Plant Physiology, 2016, 170, 489-498.	4.8	40
88	The TriForC database: a comprehensive up-to-date resource of plant triterpene biosynthesis. Nucleic Acids Research, 2018, 46, D586-D594.	14.5	40
89	Jasmonates: what ALLENE OXIDE SYNTHASE does for plants. Journal of Experimental Botany, 2019, 70, 3373-3378.	4.8	40
90	Identification of Iridoid Glucoside Transporters in Catharanthus roseus. Plant and Cell Physiology, 2017, 58, 1507-1518.	3.1	39

6

#	Article	IF	CITATIONS
91	Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast. Metabolic Engineering, 2018, 49, 1-12.	7.0	38
92	A Dual sgRNA Approach for Functional Genomics in <i>Arabidopsis thaliana</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2603-2615.	1.8	37
93	Pathogen Effectors: Exploiting the Promiscuity of Plant Signaling Hubs. Trends in Plant Science, 2021, 26, 780-795.	8.8	36
94	Glutaredoxin GRXS17 Associates with the Cytosolic Iron-Sulfur Cluster Assembly Pathway. Plant Physiology, 2016, 172, pp.00261.2016.	4.8	35
95	Engineering Metabolism in Nicotiana Species: A Promising Future. Trends in Biotechnology, 2021, 39, 901-913.	9.3	35
96	Implementation of functional genomics for gene discovery in alkaloid producing plants. Phytochemistry Reviews, 2007, 6, 35-49.	6.5	34
97	Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias(Streptophyta), with emphasis on the role of expansin. BMC Plant Biology, 2011, 11, 128.	3.6	34
98	Jasmonate: A hormone of primary importance for plant metabolism. Current Opinion in Plant Biology, 2022, 67, 102197.	7.1	34
99	Clade IVa Basic Helix–Loop–Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis. Plant and Cell Physiology, 2016, 57, 2564-2575.	3.1	33
100	RBR-Type E3 Ligases and the Ubiquitin-Conjugating Enzyme UBC26 Regulate Abscisic Acid Receptor Levels and Signaling. Plant Physiology, 2020, 182, 1723-1742.	4.8	33
101	Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annual Review of Cell and Developmental Biology, 2020, 36, 291-313.	9.4	33
102	Why and How to Dig into Plant Metabolite–Protein Interactions. Trends in Plant Science, 2021, 26, 472-483.	8.8	32
103	Taximin, a conserved plantâ€specific peptide is involved in the modulation of plantâ€specialized metabolism. Plant Biotechnology Journal, 2014, 12, 971-983.	8.3	30
104	A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLoS ONE, 2018, 13, e0201270.	2.5	30
105	A Seed-Specific Regulator of Triterpene Saponin Biosynthesis in <i>Medicago truncatula</i> . Plant Cell, 2020, 32, 2020-2042.	6.6	30
106	Selection and validation of reference genes for transcript normalization in gene expression studies in Catharanthus roseus. Plant Physiology and Biochemistry, 2014, 83, 20-25.	5.8	29
107	Yeast Two-Hybrid Analysis of Jasmonate Signaling Proteins. Methods in Molecular Biology, 2013, 1011, 173-185.	0.9	27
108	Establishment of CRISPR/Cas9 Genome Editing in Witloof (Cichorium intybus var. foliosum). Frontiers in Genome Editing, 2020, 2, 604876.	5.2	27

#	Article	IF	CITATIONS
109	Integrated metabolomics identifies CYP72A67 and CYP72A68 oxidases in the biosynthesis of Medicago truncatula oleanate sapogenins. Metabolomics, 2019, 15, 85.	3.0	26
110	Fine-tuning of early events in the jasmonate response. Plant Signaling and Behavior, 2008, 3, 846-847.	2.4	24
111	Plants for human health: greening biotechnology and synthetic biology. Journal of Experimental Botany, 2017, 68, 4009-4011.	4.8	24
112	It Is Easy to Get Huge Candidate Gene Lists for Plant Metabolism Now, but How to Get Beyond?. Molecular Plant, 2015, 8, 2-5.	8.3	22
113	CYP712K4 Catalyzes the C-29 Oxidation of Friedelin in the Maytenus ilicifolia Quinone Methide Triterpenoid Biosynthesis Pathway. Plant and Cell Physiology, 2019, 60, 2510-2522.	3.1	22
114	Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent pathways. Science Advances, 2022, 8, .	10.3	22
115	A MultiSite GatewayTM vector set for the functional analysis of genes in the model Saccharomyces cerevisiae. BMC Molecular Biology, 2012, 13, 30.	3.0	21
116	Strobilurins as growthâ€promoting compounds: how Stroby regulates Arabidopsis leaf growth. Plant, Cell and Environment, 2017, 40, 1748-1760.	5.7	21
117	Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea. PLoS ONE, 2016, 11, e0165954.	2.5	20
118	Isolation of protein complexes from the model legume <i>Medicago truncatula</i> by tandem affinity purification in hairy root cultures. Plant Journal, 2016, 88, 476-489.	5.7	20
119	Modulation of <i>Arabidopsis</i> root growth by specialized triterpenes. New Phytologist, 2021, 230, 228-243.	7.3	20
120	Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth. Nature Communications, 2021, 12, 4804.	12.8	20
121	Dissection of the one-MegaDalton JAZ1 protein complex. Plant Signaling and Behavior, 2010, 5, 1039-1041.	2.4	19
122	A Single Oxidosqualene Cyclase Produces the <i>Seco</i> -Triterpenoid α-Onocerin. Plant Physiology, 2018, 176, 1469-1484.	4.8	18
123	Determination of saponins in Maesa lanceolata by LC-UV: Development and validation. Phytochemistry, 2007, 68, 2825-2830.	2.9	17
124	FRS7 and FRS12 recruit NINJA to regulate expression of glucosinolate biosynthesis genes. New Phytologist, 2020, 227, 1124-1137.	7.3	17
125	The Arabidopsis Iron–Sulfur Protein GRXS17 is a Target of the Ubiquitin E3 Ligases RGLG3 and RGLG4. Plant and Cell Physiology, 2016, 57, 1801-1813.	3.1	16
126	Jasmonate and auxin perception: how plants keep F-boxes in check. Journal of Experimental Botany, 2019, 70, 3401-3414.	4.8	16

#	Article	IF	CITATIONS
127	Dissecting cholesterol and phytosterol biosynthesis via mutants and inhibitors. Journal of Experimental Botany, 2021, 72, 241-253.	4.8	16
128	Phytohormones: Multifunctional nutraceuticals against metabolic syndrome and comorbid diseases. Biochemical Pharmacology, 2020, 175, 113866.	4.4	15
129	The basic <scp>helix–loop–helix</scp> transcription factors <scp>MYC1</scp> and <scp>MYC2</scp> have a dual role in the regulation of constitutive and <scp>stressâ€nducible</scp> specialized metabolism in tomato. New Phytologist, 2022, 236, 911-928.	7.3	15
130	Overexpression of the <i>Arabidopsis thaliana</i> signalling peptide TAXIMIN1 affects lateral organ development. Journal of Experimental Botany, 2015, 66, 5337-5349.	4.8	13
131	Boosting the Synthesis of Pharmaceutically Active Abietane Diterpenes in S. sclarea Hairy Roots by Engineering the GGPPS and CPPS Genes. Frontiers in Plant Science, 2020, 11, 924.	3.6	13
132	SIKIX8 and SIKIX9 are negative regulators of leaf and fruit growth in tomato. Plant Physiology, 2022, 188, 382-396.	4.8	12
133	Functional Genomic Approaches to Study and Engineer Secondary Metabolism in Plant Cell Cultures. , 0, , 291-300.		12
134	A hairy-root transformation protocol for Trigonella foenum-graecum L. as a tool for metabolic engineering and specialised metabolite pathway elucidation. Plant Physiology and Biochemistry, 2020, 154, 451-462.	5.8	11
135	Review: Endoplasmic Reticulum-Associated Degradation (ERAD)-Dependent Control of (Tri)terpenoid Metabolism in Plants. Planta Medica, 2018, 84, 874-880.	1.3	10
136	The <scp>MYB</scp> transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from <i>Medicago truncatula</i> hairy roots. Plant Journal, 2019, 99, 637-654.	5.7	10
137	Subfunctionalization of Paralog Transcription Factors Contributes to Regulation of Alkaloid Pathway Branch Choice in Catharanthus roseus. Frontiers in Plant Science, 2021, 12, 687406.	3.6	10
138	cDNA-AFLP-Based Transcript Profiling for Genome-Wide Expression Analysis of Jasmonate-Treated Plants and Plant Cultures. Methods in Molecular Biology, 2013, 1011, 287-303.	0.9	9
139	It Is Easy to Get Huge Candidate Gene Lists for Plant Metabolism Now, but How to Get Beyond?. Molecular Plant, 2014, , .	8.3	9
140	Metabolic editing: small measures, great impact. Current Opinion in Biotechnology, 2019, 59, 16-23.	6.6	9
141	An Independent Evolutionary Origin for Insect Deterrent Cucurbitacins in <i>Iberis amara</i> . Molecular Biology and Evolution, 2021, 38, 4659-4673.	8.9	8
142	CHARACTERIZATION OF A RABE (RAS GENE FROM RAT BRAIN E) GTPASE EXPRESSED DURING MORPHOGENESIS IN THE UNICELLULAR GREEN ALGA <i>MICRASTERIAS DENTICULATA</i> (ZYGNEMATOPHYCEAE, STREPTOPHYTA) ¹ . Journal of Phycology, 2012, 48, 682-692.	2.3	7
143	Metabolite Profiling of Plant Tissues by Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Methods in Molecular Biology, 2013, 1011, 277-286.	0.9	6
144	The Molecular Basis of JAZ-MYC Coupling, a Protein-Protein Interface Essential for Plant Response to Stressors. Frontiers in Plant Science, 2020, 11, 1139.	3.6	6

#	Article	IF	CITATIONS
145	CRISPR-Cas-Mediated Gene Knockout in Tomato. Methods in Molecular Biology, 2020, 2083, 321-341.	0.9	6
146	An Integrated PCR Colony Hybridization Approach to Screen cDNA Libraries for Full-Length Coding Sequences. PLoS ONE, 2011, 6, e24978.	2.5	5
147	Evaluation of the Anti-angiogenic Activity of Saponins from <i>Maesa lanceolata</i> by Different Assays. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	5
148	Regulatory Oxylipins Anno 2019: Jasmonates Galore in the Plant Oxylipin Research Community. Plant and Cell Physiology, 2019, 60, 2609-2612.	3.1	5
149	Within and beyond organelle engineering: strategies for increased terpene production in yeasts and plants. Current Opinion in Green and Sustainable Chemistry, 2021, 33, 100572.	5.9	5
150	Triterpene Messages from the EU-FP7 Project TriForC. Trends in Plant Science, 2018, 23, 273-276.	8.8	4
151	A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception. Plant Physiology, 2021, 187, 430-445.	4.8	4
152	The Heat Shock Protein 40-Type Chaperone MASH Supports the Endoplasmic Reticulum-Associated Degradation E3 Ubiquitin Ligase MAKIBISHI1 in Medicago truncatula. Frontiers in Plant Science, 2021, 12, 639625.	3.6	3
153	Hypersensitivity of ArabidopsisTAXIMIN1overexpression lines to light stress is correlated with decreased sinapoyl malate abundance and countered by the antibiotic cefotaxime. Plant Signaling and Behavior, 2016, 11, e1143998.	2.4	2
154	Overview of Witloof Chicory (Cichorium intybus L.) Discolorations and Their Underlying Physiological and Biochemical Causes. Frontiers in Plant Science, 2022, 13, 843004.	3.6	2
155	Transient Gene Expression in Catharanthus roseus Flower Petals Using Agroinfiltration. Methods in Molecular Biology, 2022, , 281-291.	0.9	2
156	Engineering a highly sensitive biosensor for abscisic acid in mammalian cells. FEBS Letters, 2022, 596, 2576-2590.	2.8	2
157	Iridoid Synthase Activity Is Common among the Plant Progesterone 5Â-Reductase Family. Molecular Plant, 2014, , .	8.3	1
158	Unravelling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa lanceolata. Molecular Plant, 2014, , .	8.3	0
159	Integrating Transcriptional and Metabolic Profiling to Unravel Secondary Metabolite Biosynthesis in Plants. , 2007, , 135-138.		0