Konrad SzaciÅ, owski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3160051/publications.pdf

Version: 2024-02-01

130 4,153 31 papers citations h-index

151 151 151 4802 all docs docs citations times ranked citing authors

61

g-index

#	Article	IF	Citations
1	Lightâ€Induced Synaptic Effects Controlled by Incorporation of Chargeâ€Trapping Layer into Hybrid Perovskite Memristor. Advanced Electronic Materials, 2022, 8, .	5.1	9
2	Supercapacitance in graphene oxide materials modified with tetrapyrrole dyes: a mechanistic study. Nanoscale, 2022, 14, 8534-8547.	5.6	1
3	KNOWM memristors in a bridge synapse delay-based reservoir computing system for detection of epileptic seizures. International Journal of Parallel, Emergent and Distributed Systems, 2022, 37, 512-527.	1.0	7
4	Towards Embedded Computation with Building Materials. Materials, 2021, 14, 1724.	2.9	5
5	In Situ Regeneration of Copper-Coated Gas Diffusion Electrodes for Electroreduction of CO2 to Ethylene. Materials, 2021, 14, 3171.	2.9	5
6	Ultrasound Supported Galvanostatic Deposition of Zn Coatings Reinforced with Nano-, Submicro-, and Micro-SiC Particles—Weak Acidic Chloride Baths. Materials, 2021, 14, 3033.	2.9	1
7	Spectral properties of polycrystalline MoS ₂ films grown by RF magnetron sputtering. Journal of Applied Physics, 2021, 130, 224302.	2.5	1
8	Synthesis and spectroscopic studies of diaza-8-crown-4-dinitrophenyl ethers. Supramolecular Chemistry, 2020, 32, 13-22.	1.2	0
9	Neuromorphic Applications of a Multivalued [Snl ₄ {(C ₆ H ₅) ₂ SO} ₂] Memristor Incorporated in the Echo State Machine. ACS Applied Electronic Materials, 2020, 2, 329-338.	4.3	16
10	Liquid metal droplet solves maze. Soft Matter, 2020, 16, 1455-1462.	2.7	18
11	On the influence of magnetic field on electrodeposition of Ni–TiO2 composites from a citrate baths. Materials Chemistry and Physics, 2020, 255, 123550.	4.0	9
12	Towards synthetic neural networks: can artificial electrochemical neurons be coupled with artificial memristive synapses?. Japanese Journal of Applied Physics, 2020, 59, SI0801.	1.5	14
13	Enhanced ion binding by the benzocrown receptor and a carbonyl of the aminonaphthalimide fluorophore in water-soluble logic gates. Organic and Biomolecular Chemistry, 2020, 18, 4773-4782.	2.8	8
14	Brief Insights into Cu ₂ O Electrodeposition: Detailed Progressive Voltammetric and Electrogravimetric Analysis of a Copper Lactate System. Journal of the Electrochemical Society, 2020, 167, 042504.	2.9	5
15	Light intensity-induced photocurrent switching effect. Nature Communications, 2020, 11, 854.	12.8	25
16	Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coordination Chemistry Reviews, 2020, 415, 213316.	18.8	21
17	Bismuth triiodide complexes: structure, spectroscopy, electronic properties, and memristive properties. Journal of Materials Chemistry C, 2020, 8, 6136-6148.	5.5	6
18	In-materioneuromimetic devices: dynamics, information processing and pattern recognition. Japanese Journal of Applied Physics, 2020, 59, 050504.	1.5	17

#	Article	IF	CITATIONS
19	On Buildings that Compute. A Proposal. Emergence, Complexity and Computation, 2020, , 311-335.	0.3	1
20	Hardware Realization of the Pattern Recognition with an Artificial Neuromorphic Device Exhibiting a Short-Term Memory. Molecules, 2019, 24, 2738.	3.8	12
21	Synaptic plasticity, metaplasticity and memory effects in hybrid organic–inorganic bismuth-based materials. Nanoscale, 2019, 11, 1080-1090.	5.6	36
22	Memristor in a Reservoir System—Experimental Evidence for High-Level Computing and Neuromorphic Behavior of PbI ₂ . ACS Applied Materials & Interfaces, 2019, 11, 17009-17018.	8.0	23
23	Influence of pulse frequency on physicochemical properties of InSb films obtained via electrodeposition. Electrochimica Acta, 2019, 304, 396-404.	5.2	13
24	Supramolecular Complexes of Graphene Oxide with Porphyrins: An Interplay between Electronic and Magnetic Properties. Molecules, 2019, 24, 688.	3.8	26
25	Experimental and Theoretical Evidence of Photocurrent Amplification in Hybrid Material Based on Dibenzo-18-Crown-6., 2019, , .		0
26	Fluorimetric naphthalimide-based polymer logic beads responsive to acidity and oxidisability. Journal of Materials Chemistry C, 2019, 7, 15225-15232.	5.5	21
27	New approaches towards chemosensing. , 2019, , .		0
28	Molecular engineering of logic gate types by module rearrangement in â€~Pourbaix Sensors': the effect of excited-state electric fields. Organic and Biomolecular Chemistry, 2018, 16, 6195-6201.	2.8	23
29	Molecules, semiconductors, light and information: Towards future sensing and computing paradigms. Coordination Chemistry Reviews, 2018, 365, 23-40.	18.8	32
30	Spectroelectrochemical analysis of TiO 2 electronic states – Implications for the photocatalytic activity of anatase and rutile. Catalysis Today, 2018, 309, 35-42.	4.4	36
31	Heavy pnictogen chalcohalides: the synthesis, structure and properties of these rediscovered semiconductors. Chemical Communications, 2018, 54, 12133-12162.	4.1	39
32	Triiodide Organic Salts: Photoelectrochemistry at the Border between Insulators and Semiconductors. ChemElectroChem, 2018, 5, 3486-3497.	3.4	8
33	Charge transfer tuning in TiO2 hybrid nanostructures with acceptor–acceptor systems. Journal of Materials Chemistry C, 2017, 5, 2415-2424.	5. 5	4
34	Organotitaniaâ€Based Nanostructures as a Suitable Platform for the Implementation of Binary, Ternary, and Fuzzy Logic Systems. ChemPhysChem, 2017, 18, 1798-1810.	2.1	16
35	Water-Soluble Colorimetric Amino[<i>bis</i> (ethanesulfonate)] Azobenzene pH Indicators: A UV–Vis Absorption, DFT, and ¹ H– ¹⁵ N NMR Spectroscopy Study. ACS Omega, 2017, 2, 6159-6166.	3.5	9
36	Electrochemical Synthesis of Nanocrystalline Ni-Pd Alloys in Alkaline Ni ²⁺ â€" Pd ²⁺ â€" Cl ^{â^'} â€" NH ₃ â€" H ₂ O System and Their Catalytic Activity towards Water Splitting Process. Journal of the Electrochemical Society, 2017, 164, D613-D620.	2.9	5

#	Article	IF	Citations
37	Unconventional Computing Realized with Hybrid Materials Exhibiting the PhotoElectrochemical Photocurrent Switching (PEPS) Effect. Emergence, Complexity and Computation, 2017, , 429-467.	0.3	5
38	Synaptic Behavior in an Optoelectronic Device Based on Semiconductorâ€Nanotube Hybrid. Advanced Electronic Materials, 2016, 2, 1500471.	5.1	40
39	Novel information processing devices: A material odyssey. , 2016, , .		0
40	Composites of cadmium sulfide and copolymers of aromatic amines. , 2016, , .		0
41	Interactions between graphene oxide and wide band gap semiconductors. Journal of Physics: Conference Series, 2016, 745, 032102.	0.4	6
42	Coordination chemistry for information acquisition and processing. Coordination Chemistry Reviews, 2016, 325, 135-160.	18.8	26
43	Colorimetric Naphthaleneâ€Based Thiosemicarbazide Anion Chemosensors with an Internal Charge Transfer Mechanism. European Journal of Organic Chemistry, 2016, 2016, 4415-4422.	2.4	9
44	Influence of π-lodide Intermolecular Interactions on Electronic Properties of Tin(IV) Iodide Semiconducting Complexes. Inorganic Chemistry, 2016, 55, 5935-5945.	4.0	20
45	Electrochemically deposited nanocrystalline InSb thin films and their electrical properties. Journal of Materials Chemistry C, 2016, 4, 1345-1350.	5.5	23
46	A three-valued photoelectrochemical logic device realising accept anything and consensus operations. Chemical Communications, 2015, 51, 3559-3561.	4.1	32
47	Photoelectrochemistry of n-type antimony sulfoiodide nanowires. Nanotechnology, 2015, 26, 105710.	2.6	28
48	Tuning of electronic properties of fullerene-oligothiophene layers. Applied Physics Letters, 2015, 106, .	3.3	5
49	Lead molybdate – a promising material for optoelectronics and photocatalysis. Journal of Materials Chemistry C, 2015, 3, 2614-2623.	5.5	26
50	TiO ₂ –anthraquinone hybrids: from quantum-chemical design to functional materials. Journal of Materials Chemistry C, 2015, 3, 4148-4155.	5.5	10
51	UV-visible and ^{1 < /sup>Hâ€" ^{15 < /sup>N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors. Organic and Biomolecular Chemistry, 2015, 13, 1662-1672.}}	2.8	28
52	Acoustic wave sensing devices and their LTCC packaging. , 2014, , .		3
53	Kinetics and Mechanism of Redox Reaction between Tetrachloroaurate(III) Ions and Hydrazine. International Journal of Chemical Kinetics, 2014, 46, 328-337.	1.6	11
54	Ground and excited state properties of alizarin and its isomers. Dyes and Pigments, 2014, 103, 202-213.	3.7	45

#	Article	IF	CITATIONS
55	Photocatalytic Activity of TiO ₂ Modified with Hexafluorometallatesâ€"Fine Tuning of Redox Properties by Redox-Innocent Anions. Journal of Physical Chemistry C, 2014, 118, 24915-24924.	3.1	14
56	Bi _x La _{1â^'x} VO ₄ solid solutions: tuning of electronic properties via stoichiometry modifications. Nanoscale, 2014, 6, 2244-2254.	5.6	22
57	Supramolecular assemblies of semiconductor quantum dots and a bis(bipyridinium) derivative: luminescence quenching and aggregation phenomena. RSC Advances, 2014, 4, 29847-29854.	3.6	3
58	Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals. Journal of Materials Chemistry C, 2014, 2, 2877-2886.	5.5	39
59	Optical signal demultiplexing and conversion in the fullerene–oligothiophene–CdS system. Applied Surface Science, 2014, 319, 285-290.	6.1	9
60	The Deposition of Gold Nanoparticles Onto Activated Carbon. Archives of Metallurgy and Materials, 2014, 59, 899-903.	0.6	1
61	Redox characterization of semiconductors based on electrochemical measurements combined with UV-Vis diffuse reflectance spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 14256.	2.8	32
62	Alizarin complexone: an interesting ligand for designing TiO2-hybrid nanostructures. New Journal of Chemistry, 2013, 37, 969.	2.8	9
63	Photoelectrochemistry of n-type bismuth oxyiodide. Electrochimica Acta, 2013, 104, 448-453.	5.2	61
64	Photoluminescence Enhancement of CdSe and CdSeâ€"ZnS Nanocrystals by Onâ€Surface Ligand Modification. European Journal of Inorganic Chemistry, 2013, 2013, 3550-3556.	2.0	8
65	Novel, Microwave Assisted Route of Synthesis of Binary Oxide Semiconducting Phases – PbMoO4 And PbWo4 / Nowa Metoda Syntezy Binarnych Faz Tlenkowych O Charakterze PóÅ,przewodnikowym W Polu Mikrofalowym – PbMoO4 I PbWo4. Archives of Metallurgy and Materials, 2013, 58, 217-222.	0.6	18
66	Unconventional molecular scale logic devices., 2013,, 654-675.		0
67	New Type of Photoactive Materials Based on TiO2 Modified by Anthraquinone Derivatives / Nowe Fotoaktywne MateriaÅ,y W Oparciu O TiO2 Modyfikowany Pochodnymi Antrachinonu. Archives of Metallurgy and Materials, 2013, 58, 269-273.	0.6	4
68	Catecholate and 2,3-acenediolate complexes of d0 ions as prospective materials for molecular electronics and spintronics. Coordination Chemistry Reviews, 2012, 256, 1706-1731.	18.8	22
69	Photocatalysis Involving a Visible Light-Induced Hole Injection in a Chromate(VI)–TiO ₂ System. Journal of Physical Chemistry C, 2012, 116, 21762-21770.	3.1	39
70	Photoelectrochemical study of ZnSe electrodeposition on Cu electrode. Journal of Electroanalytical Chemistry, 2012, 674, 108-112.	3.8	21
71	Molecules onÂSemiconductors. The Electrical Engineering Handbook, 2012, , 367-396.	0.2	0
72	Photocurrent Switching Effects in TiO ₂ Modified with Ruthenium Polypyridine Complexes. Journal of Physical Chemistry C, 2011, 115, 12187-12195.	3.1	25

#	Article	IF	CITATIONS
73	Molecular Photodiode and Two-channel Optoelectronic Demultiplexer based on the [60]Fullerene-porphyrin Tetrad. Australian Journal of Chemistry, 2011, 64, 1409.	0.9	6
74	Nanoparticles with logic and numeracy: towards  computer-on-a-particle' optoelectronic devices. IET Circuits, Devices and Systems, 2011, 5, 103.	1.4	6
75	Nanoscale Digital Devices Based on the Photoelectrochemical Photocurrent Switching Effect: Preparation, Properties and Applications. Israel Journal of Chemistry, 2011, 51, 36-55.	2.3	36
76	Towards 'Computer-on-a-Particle' Devices: Optoelectronic 1:2 Demultiplexer Based on Nanostructured Cadmium Sulfide. Australian Journal of Chemistry, 2010, 63, 165.	0.9	18
77	Photoredox reactions of Cr(III) mixed-ligand complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 121-127.	3.9	8
78	Titanium(IV) complexes as direct TiO2 photosensitizers. Coordination Chemistry Reviews, 2010, 254, 2687-2701.	18.8	171
79	Arithmetic Device Based on Multiple Schottky-like Junctions. Australian Journal of Chemistry, 2010, 63, 1330.	0.9	18
80	Anomalous Photocathodic Behavior of CdS within the Urbach Tail Region. Journal of Physical Chemistry C, 2009, 113, 6774-6784.	3.1	42
81	Nanoscale optoelectronic switches and logic devices. Nanoscale, 2009, 1, 299.	5.6	74
82	Adsorption of selected ions on the anatase TiO ₂ (101) surface: a density-functional study. Molecular Simulation, 2009, 35, 567-576.	2.0	10
83	Digital Information Processing in Molecular Systems. Chemical Reviews, 2008, 108, 3481-3548.	47.7	777
84	Photosensitization and Photocurrent Switching in Carminic Acid/Titanium Dioxide Hybrid Material. Journal of Physical Chemistry C, 2008, 112, 19131-19141.	3.1	38
85	Metal-to-Metal Electron-Transfer Emission in Cyanide-Bridged Chromiumâ^'Ruthenium Complexes: Effects of Configurational Mixing Between Ligand Field and Charge Transfer Excited States. Inorganic Chemistry, 2008, 47, 10921-10934.	4.0	21
86	Photoelectrochemical Photocurrent Switching Effect: A New Platform for Molecular Logic Devices. Chimia, 2007, 61, 831-834.	0.6	34
87	Photosensitization and the Photocurrent Switching Effect in Nanocrystalline Titanium Dioxide Functionalized with Iron(II) Complexes: A Comparative Study. Chemistry - A European Journal, 2007, 13, 5676-5687.	3.3	55
88	Biomedical implications of information processing in chemical systems: Non-classical approach to photochemistry of coordination compounds. BioSystems, 2007, 90, 738-749.	2.0	8
89	Photochemistry of the [FellI(edta)(H2O)]â^' and [FellI(edta)(OH)]2â^' complexes in presence of environmentally relevant species. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 128-134.	3.9	20
90	Bioinspired Nanodevice Based on the Folic Acid/Titanium Dioxide System. Chemistry - an Asian Journal, 2007, 2, 580-590.	3.3	30

#	Article	IF	Citations
91	Synthesis, structure and photoelectrochemical properties of the TiO2–Prussian blue nanocomposite. Journal of Materials Chemistry, 2006, 16, 4603-4611.	6.7	54
92	Optoelectronic Switches Based on Wide Band Gap Semiconductors. Journal of Physical Chemistry B, 2006, 110, 15275-15283.	2.6	63
93	Light-Driven OR and XOR Programmable Chemical Logic Gates. Journal of the American Chemical Society, 2006, 128, 4550-4551.	13.7	149
94	Photochemistry of the $[Fe4(\hat{1}/43-S)3(NO)7]\hat{a}^2$ complex in the presence of S-nucleophiles: A spectroscopic study. Nitric Oxide - Biology and Chemistry, 2006, 14, 247-260.	2.7	8
95	The role of photoinduced electron transfer processes in photodegradation of the [Fe4(\hat{l} /43-S)3(NO)7] \hat{a} ° cluster. Nitric Oxide - Biology and Chemistry, 2006, 15, 370-379.	2.7	11
96	Chemical switches and logic gates based on surface modified semiconductors. Comptes Rendus Chimie, 2006, 9, 315-324.	0.5	46
97	Working prototype of an optoelectronic XOR/OR/YES reconfigurable logic device based on nanocrystalline semiconductors. Solid-State Electronics, 2006, 50, 1649-1655.	1.4	33
98	Redox-Controlled Photosensitization of Nanocrystalline Titanium Dioxide. ChemPhysChem, 2006, 7, 2384-2391.	2.1	44
99	Interplay between iron complexes, nitric oxide and sulfur ligands: Structure, (photo)reactivity and biological importance. Coordination Chemistry Reviews, 2005, 249, 2408-2436.	18.8	87
100	Bioinorganic Photochemistry:  Frontiers and Mechanisms. Chemical Reviews, 2005, 105, 2647-2694.	47.7	671
101	Solid-State Structures and Magnetic Properties of Halide-Bridged, Face-to-Face Bis-Nickel(II)-Macrocyclic Ligand Complexes:  Ligand-Mediated Interchanges of Electronic Configuration. Inorganic Chemistry, 2005, 44, 6019-6033.	4.0	21
102	Molecular Logic Gates Based on Pentacyanoferrate Complexes: From Simple Gates to Three-Dimensional Logic Systems. Chemistry - A European Journal, 2004, 10, 2520-2528.	3.3	103
103	An electrospray ionization mass spectrometry study of the nitroprusside–cation–thiolate system. Dalton Transactions RSC, 2002, , 3649-3655.	2.3	14
104	Reactions of the [Fe(CN)5NO]2â^'complex with biologically relevant thiols. New Journal of Chemistry, 2002, 26, 1495-1502.	2.8	42
105	Molecular switches based on cyanoferrate complexes. Coordination Chemistry Reviews, 2002, 229, 17-26.	18.8	40
106	S-Nitrosothiols: Materials, Reactivity and Mechanisms. Progress in Reaction Kinetics and Mechanism, 2001, 26, 1-58.	2.1	66
107	Photochemistry of the [Fe(CN) 5 N(O)SR] 3â^ complex. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143, 99-108.	3.9	24
108	Ligand and medium controlled photochemistry of iron and ruthenium mixed-ligand complexes: prospecting for versatile systems. Coordination Chemistry Reviews, 2000, 208, 277-297.	18.8	53

#	Article	IF	CITATIONS
109	Photochemistry of the [Fe(CN)5NO]2â^'â€"thiolate system. Journal of the Chemical Society Dalton Transactions, 1999, , 2353-2358.	1.1	18
110	Solar Radiation and Terrestrial Environment. , 0, , 127-155.		0
111	Photoenzymes., 0,, 189-207.		0
112	Foundation and Evolution of Photosynthesis. , 0, , 169-187.		0
113	Therapeutic Strategies., 0,, 293-334.		0
114	Light and Biomatter., 0,, 247-255.		0
115	From Interstellar Space to Planetary Atmospheres. , 0, , 107-125.		0
116	Philosophy of Bioinorganic Photochemistry. , 0, , 1-12.		0
117	Nucleic Acid Photocleavage and Charge Transport. , 0, , 227-246.		0
118	Formation and Properties of Electronic Excited States., 0,, 19-23.		0
119	Photoinduced Electron Transfer in Proteins. , 0, , 209-226.		1
120	Light and Matter. , 0, , 13-18.		0
121	Photodelivery and Phototargeting. , 0, , 345-351.		0
122	Photochemical Reactions., 0,, 41-76.		0
123	Photodynamic Inactivation of Microorganisms. , 0, , 335-343.		1
124	Photophysical Deactivation of Electronic Excited States., 0,, 25-33.		0
125	Photocatalysis in Environmental Protection. , 0, , 359-376.		0
126	Photochemistry and Photophysics of Supramolecular Systems and Nanoassemblies., 0,, 77-105.		0

#	Article	IF	CITATIONS
127	Fluorescent and Chromogenic Sensing and Labelling. , 0, , 257-292.		0
128	Phototoxicity and Photoprotection. , 0, , 353-358.		0
129	Heterogeneous (Photo)Catalysis and Biogenesis on Earth., 0,, 157-167.		O
130	Kinetics of the Excited-State Decay., 0,, 35-40.		0