Shuhei Amakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3159891/publications.pdf Version: 2024-02-01

SHILLEL ΔΜΑΚΑΊΑΛ

#	Article	IF	CITATIONS
1	Variable-Temperature Noise Characterization of N-MOSFETs Using an <i>In-Situ</i> Broadband Amplifier. IEEE Journal of the Electron Devices Society, 2021, 9, 1227-1236.	2.1	4
2	Direct White Noise Characterization of Short-Channel MOSFETs. IEEE Transactions on Electron Devices, 2021, 68, 1478-1482.	3.0	11
3	A 32-Gb/s CMOS Receiver With Analog Carrier Recovery and Synchronous QPSK Demodulation. IEEE Microwave and Wireless Components Letters, 2021, 31, 768-770.	3.2	3
4	300-GHz-Band OFDM Video Transmission with CMOS TX/RX Modules and 40dBi Cassegrain Antenna toward 6G. IEICE Transactions on Electronics, 2021, E104.C, 576-586.	0.6	4
5	A 272-GHz CMOS Analog BPSK/QPSK Demodulator for IEEE 802.15.3d. , 2021, , .		6
6	A 258-GHz CMOS Transmitter with Phase-Shifting Architecture for Phased-Array Systems. , 2021, , .		6
7	A 30-to-70-GHz CMOS Amplifier for 300-GHz Heterodyne Receivers. , 2021, , .		2
8	A 76-Gbit/s 265-GHz CMOS Receiver. , 2021, , .		6
9	Theoretical Study of Optimal Feedback LNA Design. , 2020, , .		1
10	Effect of an Electromagnetic Wave Absorber on 300-GHz Short-Range Wireless Communications. , 2020, , .		1
11	Improvement Method of Power-Added Efficiency of Multi-Stage CMOS Amplifiers in Millimeter-Wave Band. , 2020, , .		0
12	An 80-Gb/s 300-GHz-Band Single-Chip CMOS Transceiver. IEEE Journal of Solid-State Circuits, 2019, 54, 3577-3588.	5.4	160
13	Wideband Power-Line Decoupling Technique for Millimeter-Wave CMOS Integrated Circuits. , 2019, , .		3
14	Causal Characteristic Impedance Determination Using Calibration Comparison and Propagation Constant. , 2019, , .		7
15	Millimeter-Wave Circuit Parameters optimization for Designing CMOS On-Chip Transformer Coupled Amplifiers. , 2019, , .		0
16	Design of CMOS On-Chip Millimeter-Wave Transformer Coupled Balun and Power Divider-Combiner with Optimal Amplitude and Phase Imbalance. , 2019, , .		1
17	300-GHz CMOS Transceiver for Terahertz Wireless Communication. , 2018, , .		22
18	32-Gbit/s CMOS Receivers in 300-GHz Band. IEICE Transactions on Electronics, 2018, E101.C, 464-471.	0.6	8

#	Article	IF	CITATIONS
19	17.9 A 105Gb/s 300GHz CMOS transmitter. , 2017, , .		86
20	DC and RF characterization of RF MOSFET embedding structure. , 2017, , .		1
21	2.37-dBm-output 288–310 GHz frequency multiplier in 40 nm CMOS. , 2017, , .		7
22	A 40 dB peak gain, wideband, low noise intermediate frequency (IF) amplifier. , 2017, , .		1
23	A 416-mW 32-Gbit/s 300-GHz CMOS receiver. , 2017, , .		9
24	A 32Gbit/s 16QAM CMOS receiver in 300GHz band. , 2017, , .		45
25	Integrated-Circuit Approaches to THz Communications: Challenges, Advances, and Future Prospects. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A, 516-523.	0.3	20
26	CMOS 300-GHz 64-QAM transmitter. , 2016, , .		18
27	Compact 141-GHz Differential Amplifier with 20-dB Peak Gain and 22-GHz 3-dB Bandwidth. IEICE Transactions on Electronics, 2016, E99.C, 1156-1163.	0.6	6
28	A 300 GHz CMOS Transmitter With 32-QAM 17.5 Gb/s/ch Capability Over Six Channels. IEEE Journal of Solid-State Circuits, 2016, 51, 3037-3048.	5.4	100
29	Scattered Reflections on Scattering Parameters — Demystifying Complex-Referenced S Parameters —. IEICE Transactions on Electronics, 2016, E99.C, 1100-1112.	0.6	7
30	Wireless digital data transmission from a 300ÂGHz CMOS transmitter. Electronics Letters, 2016, 52, 1353-1355.	1.0	21
31	20.1 A 300GHz 40nm CMOS transmitter with 32-QAM 17.5Gb/s/ch capability over 6 channels. , 2016, , .		45
32	Recent progress and prospects of terahertz CMOS. IEICE Electronics Express, 2015, 12, 20152006-20152006.	0.8	10
33	Tehrahertz CMOS Design for Low-Power and High-Speed Wireless Communication. IEICE Transactions on Electronics, 2015, E98.C, 1091-1104.	0.6	40
34	E-Band 65nm CMOS Low-Noise Amplifier Design Using Gain-Boost Technique. IEICE Transactions on Electronics, 2014, E97.C, 476-485.	0.6	9
35	An Inductorless Cascaded Phase-Locked Loop with Pulse Injection Locking Technique in 90 <i> </i> nm CMOS. International Journal of Microwave Science and Technology, 2013, 2013, 1-11.	0.6	3
36	Modeling of Short-Millimeter-Wave CMOS Transmission Line with Lossy Dielectrics with Specific Absorption Spectrum. IEICE Transactions on Electronics, 2013, E96.C, 1311-1318.	0.6	6

Shuhei Amakawa

#	Article	IF	CITATIONS
37	1.2–17.6 GHz Ring-Oscillator-Based Phase-Locked Loop with Injection Locking in 65 nm Complementary Metal Oxide Semiconductor. Japanese Journal of Applied Physics, 2012, 51, 02BE03.	1.5	0
38	RF signal generator using time domain harmonic suppression technique in 90nm CMOS. IEICE Electronics Express, 2012, 9, 270-275.	0.8	0
39	1.2–17.6 CHz Ring-Oscillator-Based Phase-Locked Loop with Injection Locking in 65 nm Complementary Metal Oxide Semiconductor. Japanese Journal of Applied Physics, 2012, 51, 02BE03.	1.5	1
40	A Study of Digitally Controllable Radio Frequency Micro Electro Mechanical Systems Inductor. Japanese Journal of Applied Physics, 2011, 50, 05EE01.	1.5	4
41	Modeling of Reduced Surface Field Laterally Diffused Metal Oxide Semiconductor for Accurate Prediction of Junction Condition on Device Characteristics. Japanese Journal of Applied Physics, 2011, 50, 04DP03.	1.5	1
42	2.4–10 GHz Low-Noise Injection-Locked Ring Voltage Controlled Oscillator in 90 nm Complementary Metal Oxide Semiconductor. Japanese Journal of Applied Physics, 2011, 50, 04DE03.	1.5	13
43	Universal Relationship between Substrate Current and History Effect in Silicon-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics, 2011, 50, 04DC12.	1.5	1
44	RF CMOS Integrated Circuit: History, Current Status and Future Prospects. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, E94.A, 556-567.	0.3	4
45	A Study of Digitally Controllable Radio Frequency Micro Electro Mechanical Systems Inductor. Japanese Journal of Applied Physics, 2011, 50, 05EE01.	1.5	3
46	Wide-band, high linear low noise amplifier design in 0.18um CMOS technology. IEICE Electronics Express, 2010, 7, 759-764.	0.8	1
47	A Universal Equivalent Circuit Model for Ceramic Capacitors. IEICE Transactions on Electronics, 2010, E93-C, 347-354.	0.6	0
48	Highly Energy-Efficient On-Chip Pulsed-Current-Mode Transmission Line Interconnect. , 2010, , .		3
49	RF Signal Generator Based on Time-to-Analog Converter in 0.18 µm Complementary Metal Oxide Semiconductor. Japanese Journal of Applied Physics, 2010, 49, 04DE12.	1.5	5
50	Design of On-Chip High Speed Interconnect on Complementary Metal Oxide Semiconductor 180 nm Technology. Japanese Journal of Applied Physics, 2010, 49, 04DE14.	1.5	0
51	Radio Frequency Micro Electro Mechanical Systems Inductor Configurations for Achieving Large Inductance Variations and HighQ-factors. Japanese Journal of Applied Physics, 2010, 49, 05FG02.	1.5	5
52	Inductorless 8.9 mW 25 Gb/s 1:4 DEMUX and 4 mW 13 Gb/s 4:1 MUX in 90 nm CMOS. Journal of Semiconductor Technology and Science, 2010, 10, 176-184.	0.4	8
53	Inter-Chip Wiring Technology for 3-D LSI. Electrochemistry, 2009, 77, 812-817.	1.4	0
54	Physical design challenges to nano-CMOS circuits. IEICE Electronics Express, 2009, 6, 703-720.	0.8	6

Shuhei Amakawa

#	Article	IF	CITATIONS
55	Adaptable wire-length distribution with tunable occupation probability. , 2007, , .		2
56	Nanosilicon for single-electron devices. Current Applied Physics, 2004, 4, 98-101.	2.4	3
57	Cross-coupling in Coulomb blockade circuits: Bidirectional electron pump. Journal of Applied Physics, 2003, 94, 3194-3200.	2.5	1
58	Charging and Retention Times in Silicon-Floating-Dot-Single-Electron Memory. Japanese Journal of Applied Physics, 2001, 40, 2041-2045.	1.5	1
59	Nanoscale Coulomb blockade memory and logic devices. Nanotechnology, 2001, 12, 155-159.	2.6	20
60	Analysis of multiphase clocked electron pumps consisting of single-electron transistors. Journal of Applied Physics, 2001, 89, 5001-5008.	2.5	3
61	Characteristics of two Coulomb blockade transistors separated by an island to which an oscillating potential is applied: Theory and experiment. Applied Physics Letters, 2001, 79, 533-535.	3.3	7
62	Scaling of the single-electron tunnelling current through ultrasmall tunnel junctions. Journal of Physics Condensed Matter, 2000, 12, 7223-7228.	1.8	0
63	A Simple Model of a Single-Electron Floating Dot Memory for Circuit Simulation. Japanese Journal of Applied Physics, 1999, 38, 429-432.	1.5	15
64	Circuit Simulators Aiming at Single-Electron Integration. Japanese Journal of Applied Physics, 1998, 37, 1478-1482.	1.5	18
65	Correlated Electron-Hole Transport in Capacitively-Coupled One-Dimensional Tunnel Junction Arrays. Japanese Journal of Applied Physics, 1997, 36, 4166-4171.	1.5	6
66	Estimation of Cotunneling in Single-Electron Logic and Its Suppression. Japanese Journal of Applied Physics, 1996, 35, 1146-1150.	1.5	7
67	A Thru-Only De-Embedding Method Foron-Wafer Characterization of Multiport Networks. , 0, , .		5
68	Interconnect Design Challenges in Nano CMOS Circuit. Key Engineering Materials, 0, 470, 224-230.	0.4	0