
Marlene Belfort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3157873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small-molecule inhibitors for the Prp8 intein as antifungal agents. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
2	Methylation of rRNA as a host defense against rampant group II intron retrotransposition. Mobile DNA, 2021, 12, 9.	3.6	2
3	Conditional DnaB Protein Splicing Is Reversibly Inhibited by Zinc in Mycobacteria. MBio, 2020, 11, .	4.1	16
4	Exon and protein positioning in a pre-catalytic group II intron RNP primed for splicing. Nucleic Acids Research, 2020, 48, 11185-11198.	14.5	6
5	Bacterial Group II Intron Genomic Neighborhoods Reflect Survival Strategies: Hiding and Hijacking. Molecular Biology and Evolution, 2020, 37, 1942-1948.	8.9	7
6	Group II intron as cold sensor for self-preservation and bacterial conjugation. Nucleic Acids Research, 2020, 48, 6198-6209.	14.5	10
7	Mechanism of Single-Stranded DNA Activation of Recombinase Intein Splicing. Biochemistry, 2019, 58, 3335-3339.	2.5	9
8	Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. PLoS Biology, 2019, 17, e3000104.	5.6	28
9	Cisplatin protects mice from challenge of <i>Cryptococcus neoformans</i> by targeting the Prp8 intein. Emerging Microbes and Infections, 2019, 8, 895-908.	6.5	20
10	Group II Intron RNPs and Reverse Transcriptases: From Retroelements to Research Tools. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032375.	5.5	26
11	Structure of an engineered intein reveals thiazoline ring and provides mechanistic insight. Biotechnology and Bioengineering, 2019, 116, 709-721.	3.3	1
12	Conditional Protein Splicing Switch in Hyperthermophiles through an Intein-Extein Partnership. MBio, 2018, 9, .	4.1	26
13	Mycobacterial DnaB helicase intein as oxidative stress sensor. Nature Communications, 2018, 9, 4363.	12.8	26
14	Structural accommodations accompanying splicing of a group II intron RNP. Nucleic Acids Research, 2018, 46, 8542-8556.	14.5	6
15	Meeting report: mobile genetic elements and genome plasticity 2018. Mobile DNA, 2018, 9, 21.	3.6	3
16	The dynamic intein landscape of eukaryotes. Mobile DNA, 2018, 9, 4.	3.6	18
17	Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting. ELife, 2018, 7, .	6.0	13
18	Mobile self-splicing introns and inteins as environmental sensors. Current Opinion in Microbiology, 2017, 38, 51-58.	5.1	51

#	Article	IF	CITATIONS
19	Inteins. Current Biology, 2017, 27, R204-R206.	3.9	25
20	Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends in Genetics, 2017, 33, 773-783.	6.7	70
21	Protein splicing of a recombinase intein induced by ssDNA and DNA damage. Genes and Development, 2016, 30, 2663-2668.	5.9	34
22	Structure of a group II intron in complex with its reverse transcriptase. Nature Structural and Molecular Biology, 2016, 23, 549-557.	8.2	102
23	Mycobacteriophages as Incubators for Intein Dissemination and Evolution. MBio, 2016, 7, .	4.1	34
24	Exploring Intein Inhibition by Platinum Compounds as an Antimicrobial Strategy. Journal of Biological Chemistry, 2016, 291, 22661-22670.	3.4	32
25	Forks in the tracks: Group II introns, spliceosomes, telomeres and beyond. RNA Biology, 2016, 13, 1218-1222.	3.1	12
26	Intein Clustering Suggests Functional Importance in Different Domains of Life. Molecular Biology and Evolution, 2016, 33, 783-799.	8.9	67
27	Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution. Microbiology Spectrum, 2015, 3, MDNA3-0050-2014.	3.0	119
28	Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution. , 2015, , 1209-1236.		12
29	A decades-long journey with mobile introns. Rna, 2015, 21, 567-568.	3.5	Ο
30	Backbone assignments of mini-RecA intein with short native exteins and an active N-terminal catalytic cysteine. Biomolecular NMR Assignments, 2015, 9, 235-238.	0.8	1
31	SufB intein of <i>Mycobacterium tuberculosis</i> as a sensor for oxidative and nitrosative stresses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10348-10353.	7.1	54
32	Post-translational environmental switch of RadA activity by extein–intein interactions in protein splicing. Nucleic Acids Research, 2015, 43, 6631-6648.	14.5	54
33	Förster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor. Analytical Biochemistry, 2015, 488, 1-5.	2.4	26
34	Branching out of the intein active site in protein splicing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8323-8324.	7.1	0
35	Interaction between Conjugative and Retrotransposable Elements in Horizontal Gene Transfer. PLoS Genetics, 2014, 10, e1004853.	3.5	17
36	RNA–RNA interactions and pre-mRNA mislocalization as drivers of group II intron loss from nuclear genomes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6612-6617.	7.1	20

#	Article	IF	CITATIONS
37	Quaternary arrangement of an active, native group II intron ribonucleoprotein complex revealed by small-angle X-ray scattering. Nucleic Acids Research, 2014, 42, 5347-5360.	14.5	19
38	1H, 13C, and 15N NMR assignments of a Drosophila Hedgehog autoprocessing domain. Biomolecular NMR Assignments, 2014, 8, 279-281.	0.8	7
39	Enigmatic Distribution, Evolution, and Function of Inteins. Journal of Biological Chemistry, 2014, 289, 14490-14497.	3.4	87
40	Mobile DNA: an evolving field. Mobile DNA, 2014, 5, 16.	3.6	0
41	Homing Endonucleases: From Genetic Anomalies to Programmable Genomic Clippers. Methods in Molecular Biology, 2014, 1123, 1-26.	0.9	64
42	Mapping Homing Endonuclease Cleavage Sites Using In Vitro Generated Protein. Methods in Molecular Biology, 2014, 1123, 55-67.	0.9	2
43	Hand-Holding for Retrohoming in a Molecular Diversity Dance. Structure, 2013, 21, 195-196.	3.3	0
44	A redox trap to augment the intein toolbox. Biotechnology and Bioengineering, 2013, 110, 1565-1573.	3.3	19
45	Oriented Covalent Immobilization of Antibodies for Measurement of Intermolecular Binding Forces between Zipper-Like Contact Surfaces of Split Inteins. Analytical Chemistry, 2013, 85, 6080-6088.	6.5	32
46	A conserved threonine springâ€loads precursor for intein splicing. Protein Science, 2013, 22, 557-563.	7.6	31
47	Group II intron-ribosome association protects intron RNA from degradation. Rna, 2013, 19, 1497-1509.	3.5	11
48	Cisplatin Inhibits Protein Splicing, Suggesting Inteins as Therapeutic Targets in Mycobacteria. Journal of Biological Chemistry, 2011, 286, 1277-1282.	3.4	43
49	Electronic Structure of Neighboring Extein Residue Modulates Intein C-Terminal Cleavage Activity. Biophysical Journal, 2011, 100, 2217-2225.	0.5	17
50	Spontaneous Proton Transfer to a Conserved Intein Residue Determines On-Pathway Protein Splicing. Journal of Molecular Biology, 2011, 406, 430-442.	4.2	24
51	Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nature Structural and Molecular Biology, 2011, 18, 630-633.	8.2	75
52	Redox-Responsive Zinc Finger Fidelity Switch in Homing Endonuclease and Intron Promiscuity in Oxidative Stress. Current Biology, 2011, 21, 243-248.	3.9	25
53	Learning to live together: mutualism between self-splicing introns and their hosts. BMC Biology, 2011, 9, 22.	3.8	69
54	The group II intron ribonucleoprotein precursor is a large, loosely packed structure. Nucleic Acids Research, 2011, 39, 2845-2854.	14.5	13

#	Article	IF	CITATIONS
55	Protease Activation of Split Green Fluorescent Protein. ChemBioChem, 2010, 11, 2259-2263.	2.6	20
56	Social networking between mobile introns and their host genes. Molecular Microbiology, 2010, 78, 1-4.	2.5	26
57	Nuclear expression of a group II intron is consistent with spliceosomal intron ancestry. Genes and Development, 2010, 24, 827-836.	5.9	45
58	Mobile DNA elements in T4 and related phages. Virology Journal, 2010, 7, 290.	3.4	74
59	Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Research, 2010, 38, 4067-4078.	14.5	108
60	Backbone Dynamics and Global Effects of an Activating Mutation in Minimized Mtu RecA Inteins. Journal of Molecular Biology, 2010, 400, 755-767.	4.2	23
61	Scientific Serendipity Initiates an Intron Odyssey. Journal of Biological Chemistry, 2009, 284, 29997-30003.	3.4	3
62	Modulation of intein activity by its neighboring extein substrates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11005-11010.	7.1	103
63	Highly Conserved Histidine Plays a Dual Catalytic Role in Protein Splicing: A p <i>K</i> _a Shift Mechanism. Journal of the American Chemical Society, 2009, 131, 11581-11589.	13.7	62
64	Selection and Structure of Hyperactive Inteins: Peripheral Changes Relayed to the Catalytic Center. Journal of Molecular Biology, 2009, 393, 1106-1117.	4.2	33
65	Global Regulators Orchestrate Group II Intron Retromobility. Molecular Cell, 2009, 34, 250-256.	9.7	44
66	1H, 13C, and 15N NMR assignments of an engineered intein based on Mycobacterium tuberculosis RecA. Biomolecular NMR Assignments, 2008, 2, 111-113.	0.8	12
67	The Take and Cive Between Retrotransposable Elements and their Hosts. Annual Review of Genetics, 2008, 42, 587-617.	7.6	168
68	Role of the Interdomain Linker in Distance Determination for Remote Cleavage by Homing Endonuclease I-TevI. Journal of Molecular Biology, 2008, 379, 1094-1106.	4.2	12
69	A mutant screen reveals RNase E as a silencer of group II intron retromobility in <i>Escherichia coli</i> . Rna, 2008, 14, 2634-2644.	3.5	31
70	The beginning of the end: Links between ancient retroelements and modern telomerases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9107-9108.	7.1	39
71	Functional defects in transfer RNAs lead to the accumulation of ribosomal RNA precursors. Rna, 2007, 13, 597-605.	3.5	9
72	Homing endonuclease I-TevIII: dimerization as a means to a double-strand break. Nucleic Acids Research, 2007, 35, 1589-1600.	14.5	7

#	Article	IF	CITATIONS
73	Crystallographic and Mutational Studies of Mycobacterium tuberculosis recA Mini-inteins Suggest a Pivotal Role for a Highly Conserved Aspartate Residue. Journal of Molecular Biology, 2007, 367, 162-173.	4.2	72
74	From Monomeric to Homodimeric Endonucleases and Back: Engineering Novel Specificity of LAGLIDADG Enzymes. Journal of Molecular Biology, 2006, 361, 744-754.	4.2	38
75	Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Research, 2006, 34, 1755-1764.	14.5	16
76	Bipolar localization of the group II intron Ll.LtrB is maintained inEscherichia colideficient in nucleoid condensation, chromosome partitioning and DNA replication. Molecular Microbiology, 2006, 62, 709-722.	2.5	15
77	Visualization of a group II intron in the 23S rRNA of a stable ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9838-9843.	7.1	6
78	Retrotransposition strategies of the Lactococcus lactis Ll.LtrB group II intron are dictated by host identity and cellular environment. Molecular Microbiology, 2005, 56, 509-524.	2.5	50
79	Homing Endonuclease I-TevI: An Atypical Zinc Finger with a Novel Function. , 2005, , 35-38.		0
80	Recruitment of host functions suggests a repair pathway for late steps in group II intron retrohoming. Genes and Development, 2005, 19, 2477-2487.	5.9	63
81	Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. Rna, 2005, 11, 14-28.	3.5	85
82	Localization, mobility and fidelity of retrotransposed Group II introns in rRNA genes. Nucleic Acids Research, 2005, 33, 5262-5270.	14.5	23
83	Single-step affinity purification of toxic and non-toxic proteins on a fluidics platform. Lab on A Chip, 2005, 5, 248.	6.0	13
84	Minimization and stabilization of the Mycobacterium tuberculosis recA intein. Journal of Molecular Biology, 2005, 354, 916-926.	4.2	47
85	Back to Basics: Structure, Function, Evolution and Application of Homing Endonucleases and Inteins. , 2005, , 1-10.		5
86	Analysis of the LAGLIDADG interface of the monomeric homing endonuclease I-Dmol. Nucleic Acids Research, 2004, 32, 3156-3168.	14.5	29
87	The Small Noncoding DsrA RNA Is an Acid Resistance Regulator in Escherichia coli. Journal of Bacteriology, 2004, 186, 6179-6185.	2.2	78
88	Intron-encoded homing endonuclease I-TevI also functions as a transcriptional autorepressor. Nature Structural and Molecular Biology, 2004, 11, 936-944.	8.2	38
89	Coincidence of Cleavage Sites of Intron Endonuclease I-TevI and Critical Sequences of the Host Thymidylate Synthase Gene. Journal of Molecular Biology, 2004, 343, 1231-1241.	4.2	36
90	Importance of a Single Base Pair for Discrimination between Intron-Containing and Intronless Alleles by Endonuclease I-Bmol. Current Biology, 2003, 13, 973-978.	3.9	36

#	Article	IF	CITATIONS
91	A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research, 2003, 31, 1805-1812.	14.5	634
92	SegG Endonuclease Promotes Marker Exclusion and Mediates Co-conversion from a Distant Cleavage Site. Journal of Molecular Biology, 2003, 334, 13-23.	4.2	42
93	A bacterial group II intron favors retrotransposition into plasmid targets. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15742-15747.	7.1	37
94	Two for the price of one: a bifunctional intron-encoded DNA endonuclease-RNA maturase. Genes and Development, 2003, 17, 2860-2863.	5.9	74
95	Zinc finger as distance determinant in the flexible linker of intron endonuclease I-TevI. Proceedings of the United States of America, 2002, 99, 8554-8561.	7.1	47
96	Intein-mediated purification of cytotoxic endonuclease I-TevI by insertional inactivation and pH-controllable splicing. Nucleic Acids Research, 2002, 30, 4864-4871.	14.5	44
97	Domain structure and RNA annealing activity of the Escherichia coli regulatory protein StpA. Molecular Microbiology, 2002, 28, 847-857.	2.5	57
98	Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nature Structural Biology, 2002, 9, 806-11.	9.7	64
99	Retrotransposition of the Ll.LtrB group II intron proceeds predominantly via reverse splicing into DNA targets. Molecular Microbiology, 2002, 46, 1259-1272.	2.5	95
100	Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. EMBO Journal, 2001, 20, 3631-3637.	7.8	67
101	The win-win potential for motherhood and science. Current Biology, 2001, 11, R41-R42.	3.9	0
102	Riboregulation by DsrA RNA: trans-actions for global economy. MicroReview. Molecular Microbiology, 2000, 38, 667-672.	2.5	97
103	Retrotransposition of a bacterial group II intron. Nature, 2000, 404, 1018-1021.	27.8	139
104	Optimized Single-Step Affinity Purification with a Self-Cleaving Intein Applied to Human Acidic Fibroblast Growth Factor. Biotechnology Progress, 2000, 16, 1055-1063.	2.6	88
105	Barriers to Intron Promiscuity in Bacteria. Journal of Bacteriology, 2000, 182, 5281-5289.	2.2	130
106	Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes and Development, 2000, 14, 559-573.	5.9	115
107	Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Research, 1999, 27, 2115-2125.	14.5	103
108	A genetic system yields self-cleaving inteins for bioseparations. Nature Biotechnology, 1999, 17, 889-892.	17.5	239

#	Article	IF	CITATIONS
109	Crystal structure of the thermostable archaeal intron-encoded endonuclease I- Dmo I 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1999, 286, 1123-1136.	4.2	98
110	Role of Exonucleolytic Degradation in Group I Intron Homing in Phage T4. Genetics, 1999, 153, 1501-1512.	2.9	34
111	Intron Homing With Limited Exon Homology: Illegitimate Double-Strand-Break Repair in Intron Acquisition by Phage T4. Genetics, 1999, 153, 1513-1523.	2.9	21
112	Crystallization and preliminary crystallographic analysis of the archaeal intron-encoded endonuclease I-DmoI. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1435-1436.	2.5	3
113	Retrohoming of a Bacterial Group II Intron. Cell, 1998, 94, 451-462.	28.9	208
114	Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12456-12461.	7.1	268
115	Lightning strikes twice: Intron-intein coincidence. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1356-1357.	7.1	39
116	Genetic definition of a protein-splicing domain: Functional mini-inteins support structure predictions and a model for intein evolution. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11466-11471.	7.1	129
117	Homing endonucleases: keeping the house in order. Nucleic Acids Research, 1997, 25, 3379-3388.	14.5	430
118	Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. Journal of Molecular Biology, 1997, 265, 494-506.	4.2	87
119	Another Bridge between Kingdoms: tRNA Splicing in Archaea and Eukaryotes. Cell, 1997, 89, 1003-1006.	28.9	67
120	Intron-encoded Endonuclease I-TevII Binds Across the Minor Groove and Induces Two Distinct Conformational Changes in its DNA Substrate. Journal of Molecular Biology, 1996, 255, 412-424.	4.2	30
121	Retrohoming: cDNA-Mediated Mobility of Group II Introns Requires a Catalytic RNA. Cell, 1996, 84, 9-12.	28.9	82
122	Homology Requirements for Double-Strand Break-Mediated Recombination in a Phage λ-td Intron Model System. Genetics, 1996, 143, 1057-1068.	2.9	18
123	Mechanisms of Intron Mobility. Journal of Biological Chemistry, 1995, 270, 30237-30240.	3.4	238
124	Selection of a Remote Cleavage Site by I-TevI, thetdIntron-encoded Endonuclease. Journal of Molecular Biology, 1995, 247, 197-210.	4.2	63
125	Homing sweet homing: mobile introns in bacterial viruses. Seminars in Virology, 1995, 6, 65-73.	3.9	1
126	Protein splicing elements: inteins and exteins — a definition of terms and recommended nomenclature. Nucleic Acids Research, 1994, 22, 1125-1127.	14.5	349

#	Article	IF	CITATIONS
127	Evolution of mobile group I introns: recognition of intron sequences by an intron-encoded endonuclease Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11983-11987.	7.1	71
128	Introns as Mobile Genetic Elements. Annual Review of Biochemistry, 1993, 62, 587-622.	11.1	637
129	Group I and group II introns FASEB Journal, 1993, 7, 15-24.	0.5	268
130	Nucleotide sequence of a newly-identifiedEscherichia coligene,stpA, encoding an H-NS-like protein. Nucleic Acids Research, 1992, 20, 6735-6735.	14.5	81
131	The neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core. Cell, 1992, 69, 483-494.	28.9	108
132	Effects of mutations of the bulged nucleotide in the conserved P7 pairing element of the phage T4 td intron on ribozyme function. Biochemistry, 1991, 30, 3295-3303.	2.5	31
133	Self-splicing introns in prokaryotes: Migrant fossils?. Cell, 1991, 64, 9-11.	28.9	73
134	Protein overproduction in Escherichia coli: RNA stabilization, cell disruption and recovery with a cross-flow microfiltration membrane. Journal of Biotechnology, 1991, 18, 225-242.	3.8	7
135	4981791 RNA stabilization vector. International Journal of Biochemistry & Cell Biology, 1991, 23, ν.	0.5	0
136	Spontaneous shuffling of domains between introns of phage T4. Nature, 1990, 346, 394-396.	27.8	20
137	Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications. Nucleic Acids Research, 1990, 18, 3763-3770.	14.5	118
138	Genetic and molecular analysis of RNA splicing in Escherichia coli. Methods in Enzymology, 1990, 181, 521-539.	1.0	27
139	Phage T4 Introns: Self-Splicing and Mobility. Annual Review of Genetics, 1990, 24, 363-385.	7.6	99
140	Deletion-tolerance and trans-splicing of the bacteriophage T4 td intron. Journal of Molecular Biology, 1990, 211, 537-549.	4.2	66
141	Sequence specificity of the P6 pairing for splicing of the group Itdintron of phage T4. Nucleic Acids Research, 1989, 17, 9147-9163.	14.5	20
142	The inconsistent distribution of introns in the T-even phages indicates recent genetic exchanges. Nucleic Acids Research, 1989, 17, 301-315.	14.5	42
143	Bacteriophage introns: parasites within parasites?. Trends in Genetics, 1989, 5, 209-213.	6.7	37
144	Intron mobility in the T-even phages: High frequency inheritance of group I introns promoted by intron open reading frames. Cell, 1989, 56, 455-465.	28.9	142

#	Article	IF	CITATIONS
145	A site-specific endonuclease and co-conversion of flanking exons associated with the mobile td intron of phage T4**Presented at the Albany Conference on â€~RNA: Catalysis, Splicing, Evolution'. Rensselaerville, N.Y. (U.S.A.), 22-25 September, 1988 , 1989, , 119-126.		0
146	Mobile introns: definition of terms and recommended nomenclature**Presented at the Albany Conference on â€~RNA: Catalysis, Splicing, Evolution', Rensselaerville, NY (U.S.A.) 22-25 September, 1988 , 1989, , 115-118.		0
147	Stability of group I intron RNA in Escherichia coli and its potential application in a novel expression vector. Gene, 1988, 73, 295-304.	2.2	24
148	Two domains for splicing in the intron of the phage T4 thymidylate synthase (td) gene established by nondirected mutagenesis. Cell, 1987, 48, 63-71.	28.9	45
149	Processing and Genetic Characterization of Self-Splicing RNAs of Bacteriophage T4. , 1987, , 45-66.		0
150	RNA splicing and in vivo expression of the intron-containing td gene of bacteriophage T4. Gene, 1986, 41, 93-102.	2.2	27
151	Multiple self-splicing introns in bacteriophage T4: Evidence from autocatalytic GTP labeling of RNA in vitro. Cell, 1986, 47, 81-87.	28.9	118
152	Characterization of the intron in the phage T4 thymidylate synthase gene and evidence for its self-excision from the primary transcript. Cell, 1986, 45, 157-166.	28.9	102
153	RNA processing in a structural gene from bacteriophage T4. Biochemical Society Transactions, 1986, 14, 813-815.	3.4	2
154	Processing of phage T4 td-encoded RNA is analogous to the eukaryotic group I splicing pathway Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5875-5879.	7.1	50
155	Processing of the intron-containing thymidylate synthase (td) gene of phage T4 is at the RNA level. Cell, 1985, 41, 375-382.	28.9	90
156	Probing the infra-structure of thymidylate synthase and deoxycytidylate deaminase. Advances in Enzyme Regulation, 1984, 22, 413-430.	2.6	9
157	Application of the microwave oven to scale-up in biological temperatures-shift experiments. Journal of Microbiological Methods, 1983, 1, 191-195.	1.6	1
158	The cll-independent expression of the phage λ int gene in RNase III-defective E. coli. Gene, 1980, 11, 149-155.	2.2	34
159	A single functional arginyl residue involved in the catalysis promoted by Lactobacillus casei thymidylate synthetase. Archives of Biochemistry and Biophysics, 1980, 204, 340-349.	3.0	15
160	The requirement of nonsense suppression for the development of several phages. Molecular Genetics and Genomics, 1979, 170, 155-159.	2.4	41
161	Interaction of cII, cIII, and cro gene products in the regulation of early and late functions of phage λ. Virology, 1977, 79, 426-436.	2.4	26
162	Repressor and int synthesis of bacteriophage λ in the E. coli host mutant ER437. Molecular Genetics and Genomics, 1977, 155, 347-349.	2.4	4

#	Article	IF	CITATIONS
163	Activation of the lambda int gene by the cll and clll gene products. Virology, 1976, 74, 324-331.	2.4	87
164	Efficient suppression of the requirement for N function of bacteriophage λ by a rho-defective E. coli suA mutant. Molecular Genetics and Genomics, 1976, 148, 171-173.	2.4	9
165	Isolation, characterization and deletion mapping of amber mutations in the cII gene of phage λ. Virology, 1975, 63, 147-159.	2.4	50
166	An analysis of the processes of infection and induction of E. coli mutant hfl-l by bacteriophage lambda. Virology, 1973, 55, 183-192.	2.4	38
167	Genetic and Biochemical Investigation of the <i>Escherichia coli</i> Mutant <i>hfl-1</i> Which is Lysogenized at High Frequency by Bacteriophage Lambda. Journal of Bacteriology, 1973, 115, 299-306.	2.2	43