Jessica Quintin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3156620/publications.pdf

Version: 2024-02-01

		236925	5	501196	
28	9,088 citations	25		28	
papers	citations	h-index		g-index	
			ľ		
30	30	30		9541	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345, 1250684.	12.6	1,517
2	Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science, 2014, 345, 1251086.	12.6	1,338
3	Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17537-17542.	7.1	1,294
4	Trained Immunity: A Memory for Innate Host Defense. Cell Host and Microbe, 2011, 9, 355-361.	11.0	1,177
5	Candida albicans Infection Affords Protection against Reinfection via Functional Reprogramming of Monocytes. Cell Host and Microbe, 2012, 12, 223-232.	11.0	926
6	Oxidized Low-Density Lipoprotein Induces Long-Term Proinflammatory Cytokine Production and Foam Cell Formation via Epigenetic Reprogramming of Monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1731-1738.	2.4	486
7	Long-Lasting Effects of BCG Vaccination on Both Heterologous Th1/Th17 Responses and Innate Trained Immunity. Journal of Innate Immunity, 2014, 6, 152-158.	3.8	478
8	BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clinical Immunology, 2014, 155, 213-219.	3.2	359
9	Trained Immunity or Tolerance: Opposing Functional Programs Induced in Human Monocytes after Engagement of Various Pattern Recognition Receptors. Vaccine Journal, 2014, 21, 534-545.	3.1	262
10	Innate immune memory: towards a better understanding of host defense mechanisms. Current Opinion in Immunology, 2014, 29, 1-7.	5.5	214
11	Autophagy Controls BCG-Induced Trained Immunity and the Response to Intravesical BCG Therapy for Bladder Cancer. PLoS Pathogens, 2014, 10, e1004485.	4.7	167
12	The Complexity of Fungal \hat{l}^2 -Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System. Frontiers in Immunology, 2018, 9, 673.	4.8	110
13	Fungal Chitin Induces Trained Immunity in Human Monocytes during Cross-talk of the Host with Saccharomyces cerevisiae. Journal of Biological Chemistry, 2016, 291, 7961-7972.	3.4	90
14	Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Scientific Reports, 2019, 9, 775.	3.3	87
15	Microglial Priming as Trained Immunity in the Brain. Neuroscience, 2019, 405, 47-54.	2.3	68
16	Cell Wall Changes in Amphotericin B-Resistant Strains from Candida tropicalis and Relationship with the Immune Responses Elicited by the Host. Antimicrobial Agents and Chemotherapy, 2016, 60, 2326-2335.	3.2	60
17	Innate immune memory through TLR2 and NOD2 contributes to the control of Leptospira interrogans infection. PLoS Pathogens, 2019, 15, e1007811.	4.7	55
18	Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes and Immunity, 2019, 20, 403-414.	4.1	55

#	Article	IF	CITATIONS
19	The Effects of Orally Administered Beta-Glucan on Innate Immune Responses in Humans, a Randomized Open-Label Intervention Pilot-Study. PLoS ONE, 2014, 9, e108794.	2.5	50
20	The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis. Journal of Interferon and Cytokine Research, 2016, 36, 267-276.	1.2	45
21	î²-Glucan–induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies. Journal of Clinical Investigation, 2020, 130, 4561-4573.	8.2	44
22	InÂvitro induction of trained immunity in adherent human monocytes. STAR Protocols, 2021, 2, 100365.	1.2	42
23	Differential role of NK cells against <i>Candida albicans</i> infection in immunocompetent or immunocompromised mice. European Journal of Immunology, 2014, 44, 2405-2414.	2.9	41
24	Innate immune memory in mammals. Seminars in Immunology, 2016, 28, 351-358.	5.6	36
25	Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Microbes and Infection, 2019, 21, 237-245.	1.9	28
26	Impaired phagocytosis directs human monocyte activation in response to fungal derived βâ€glucan particles. European Journal of Immunology, 2018, 48, 757-770.	2.9	27
27	Fungal mediated innate immune memory, what have we learned?. Seminars in Cell and Developmental Biology, 2019, 89, 71-77.	5.0	22
28	NKp30 Enables NK Cells to Act Naturally with Fungi. Cell Host and Microbe, 2013, 14, 369-371.	11.0	9