Jinsong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3155621/publications.pdf Version: 2024-02-01

LINSONG 7HU

#	Article	IF	CITATIONS
1	Non-genomic action of juvenile hormone modulates the synthesis of 20-hydroxyecdysone in Drosophila. Science Bulletin, 2022, 67, 117-118.	9.0	3
2	Regulation of circadian rhythm and sleep by <i>miRâ€375â€ŧimeless</i> interaction in <i>Drosophila</i> . FASEB Journal, 2020, 34, 16536-16551.	0.5	14
3	Molecular action of pyriproxyfen: Role of the Methoprene-tolerant protein in the pyriproxyfen-induced sterilization of adult female mosquitoes. PLoS Neglected Tropical Diseases, 2020, 14, e0008669.	3.0	9
4	Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae. PLoS Genetics, 2020, 16, e1008765.	3.5	19
5	Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium. PLoS Pathogens, 2020, 16, e1008453.	4.7	22
6	EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nature Communications, 2019, 10, 3892.	12.8	95
7	Krüppel homologue 1 acts as a repressor and an activator in the transcriptional response to juvenile hormone in adult mosquitoes. Insect Molecular Biology, 2018, 27, 268-278.	2.0	41
8	Juvenile hormone-regulated alternative splicing of the <i>taiman</i> gene primes the ecdysteroid response in adult mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7738-E7747.	7.1	32
9	Elucidating the Regulatory Mechanism of the Transcription Factor Krüppel homolog 1 in Mosquito Reproduction. FASEB Journal, 2018, 32, 648.25.	0.5	0
10	Association of microRNAs with Argonaute proteins in the malaria mosquito Anopheles gambiae after blood ingestion. Scientific Reports, 2017, 7, 6493.	3.3	21
11	Protein kinase C modulates transcriptional activation by the juvenile hormone receptor methoprene-tolerant. Insect Biochemistry and Molecular Biology, 2016, 70, 44-52.	2.7	38
12	The Role of Juvenile Hormone in Mosquito Development and Reproduction. Advances in Insect Physiology, 2016, 51, 93-113.	2.7	35
13	Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1871-9.	7.1	58
14	A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Molecular and Cellular Endocrinology, 2014, 394, 47-58.	3.2	65
15	Translational regulation of Anopheles gambiae mRNAs in the midgut during Plasmodium falciparum infection. BMC Genomics, 2012, 13, 366.	2.8	33
16	Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 638-643.	7.1	242
17	Identification of juvenile hormone target genes in the adult female mosquitoes. Insect Biochemistry and Molecular Biology, 2010, 40, 23-29.	2.7	69
18	Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti. Journal of Insect Physiology, 2008, 54, 231-239.	2.0	52

JINSONG ZHU

#	Article	IF	CITATIONS
19	Characterization of a juvenile hormone-regulated chymotrypsin-like serine protease gene in Aedes aegypti mosquito. Insect Biochemistry and Molecular Biology, 2008, 38, 190-200.	2.7	42
20	Distinct roles of Broad isoforms in regulation of the 20-hydroxyecdysone effector gene, Vitellogenin, in the mosquito Aedes aegypti. Molecular and Cellular Endocrinology, 2007, 267, 97-105.	3.2	51
21	Genome Sequence of Aedes aegypti, a Major Arbovirus Vector. Science, 2007, 316, 1718-1723.	12.6	1,025
22	The Competence Factor βFtz-F1 Potentiates Ecdysone Receptor Activity via Recruiting a p160/SRC Coactivator. Molecular and Cellular Biology, 2006, 26, 9402-9412.	2.3	100
23	Synergistic action of E74B and ecdysteroid receptor in activating a 20-hydroxyecdysone effector gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15506-15511.	7.1	42
24	The early gene Broad is involved in the ecdysteroid hierarchy governing vitellogenesis of the mosquito Aedes aegypti. Journal of Molecular Endocrinology, 2004, 33, 743-761.	2.5	71
25	The early gene E74B isoform is a transcriptional activator of the ecdysteroid regulatory hierarchy in mosquito vitellogenesis. Molecular and Cellular Endocrinology, 2004, 218, 95-105.	3.2	28
26	Cyclicity of mosquito vitellogenic ecdysteroid-mediated signaling is modulated by alternative dimerization of the RXR homologue Ultraspiracle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 544-549.	7.1	50
27	Posttranscriptional control of the competence factor ÂFTZ-F1 by juvenile hormone in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13338-13343.	7.1	101
28	A COUP-TF/Svp homolog is highly expressed during vitellogenesis in the mosquito Aedes aegypti. Journal of Molecular Endocrinology, 2002, 29, 223-238.	2.5	26
29	Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochemistry and Molecular Biology, 2002, 32, 1275-1286.	2.7	199
30	Two isoforms of the early E74 gene, an Ets transcription factor homologue, are implicated in the ecdysteroid hierarchy governing vitellogenesis of the mosquito, Aedes aegypti. Molecular and Cellular Endocrinology, 2002, 190, 147-157.	3.2	79
31	Differential expression and regulation by 20-hydroxyecdysone of mosquito ecdysteroid receptor isoforms A and B. Molecular and Cellular Endocrinology, 2002, 196, 29-42.	3.2	48
32	The hypocotyl chloroplast plays a role in phototropic bending of Arabidopsis seedlings: developmental and genetic evidence. Journal of Experimental Botany, 2001, 52, 91-97.	4.8	10
33	HcwA, an Autolysin, Is Required for Heterocyst Maturation in Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2001, 183, 6841-6851.	2.2	46
34	AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti. EMBO Journal, 2000, 19, 253-262.	7.8	66
35	Differential Expression and Regulation by 20-Hydroxyecdysone of Mosquito Ultraspiracle Isoforms. Developmental Biology, 2000, 218, 99-113.	2.0	90
36	Conserved Molecular Mechanism for the Stage Specificity of the Mosquito Vitellogenic Response to Ecdysone. Developmental Biology, 2000, 224, 96-110.	2.0	65

#	Article	IF	CITATIONS
37	The stomatal response to CO 2 is linked to changes in guard cell zeaxanthin*. Plant, Cell and Environment, 1998, 21, 813-820.	5.7	54
38	Regulation of hepA of Anabaena sp. Strain PCC 7120 by Elements 5′ from the Gene and by hepK. Journal of Bacteriology, 1998, 180, 4233-4242.	2.2	56
39	Structural and functional properties of the coleoptile chloroplast: Photosynthesis and photosensory transduction. Photosynthesis Research, 1995, 44, 207-219.	2.9	11