
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3152831/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science, 1999, 284, 1819-1821.	12.6	2,314
2	Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478, 89-92.	27.8	1,866
3	Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472, 69-73.	27.8	1,259
4	Optomechanical crystals. Nature, 2009, 462, 78-82.	27.8	938
5	Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System. Physical Review Letters, 2000, 85, 74-77.	7.8	793
6	Nonlinear optical phenomena in silicon waveguides: modeling and applications. Optics Express, 2007, 15, 16604.	3.4	774
7	A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459, 550-555.	27.8	625
8	Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nature Photonics, 2012, 6, 369-373.	31.4	545
9	Cavity opto-mechanics using an optically levitated nanosphere. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1005-1010.	7.1	493
10	A high-resolution microchip optomechanical accelerometer. Nature Photonics, 2012, 6, 768-772.	31.4	493
11	Squeezed light from a silicon micromechanical resonator. Nature, 2013, 500, 185-189.	27.8	458
12	Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Optics Express, 2005, 13, 1515.	3.4	429
13	Coherent optical wavelength conversion via cavity optomechanics. Nature Communications, 2012, 3, 1196.	12.8	380
14	Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature, 2007, 450, 862-865.	27.8	366
15	Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper. Optics Express, 2005, 13, 801.	3.4	360
16	Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nature Physics, 2017, 13, 465-471.	16.7	360
17	Observation of Quantum Motion of a Nanomechanical Resonator. Physical Review Letters, 2012, 108, 033602.	7.8	334
18	Quantum Cascade Surface-Emitting Photonic Crystal Laser. Science, 2003, 302, 1374-1377.	12.6	317

#	Article	IF	CITATIONS
19	Momentum space design of high-Q photonic crystal optical cavities. Optics Express, 2002, 10, 670.	3.4	302
20	Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 2012, 101, 081115.	3.3	269
21	Proposal for an optomechanical traveling wave phonon–photon translator. New Journal of Physics, 2011, 13, 013017.	2.9	255
22	Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical System. Physical Review Letters, 2012, 109, 063601.	7.8	245
23	Superconducting qubit to optical photon transduction. Nature, 2020, 588, 599-603.	27.8	242
24	Coherent mixing of mechanical excitations in nano-optomechanical structures. Nature Photonics, 2010, 4, 236-242.	31.4	237
25	Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photonics, 2007, 1, 416-422.	31.4	216
26	Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Optics Express, 2006, 14, 817.	3.4	196
27	Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity. Physical Review Letters, 2014, 112, 153603.	7.8	186
28	First-principle derivation of gain in high-index-contrast waveguides. Optics Express, 2008, 16, 16659.	3.4	184
29	Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Optics Express, 2010, 18, 14926.	3.4	175
30	Ultra-low-loss optical delay line on a silicon chip. Nature Communications, 2012, 3, 867.	12.8	175
31	Efficient microwave to optical photon conversion: an electro-optical realization. Optica, 2016, 3, 597.	9.3	174
32	Static and dynamic wavelength routing via the gradient optical force. Nature Photonics, 2009, 3, 478-483.	31.4	169
33	A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Applied Physics Letters, 2009, 95, .	3.3	165
34	Experimental demonstration of a high quality factor photonic crystal microcavity. Applied Physics Letters, 2003, 83, 1915-1917.	3.3	163
35	Phonon counting and intensity interferometry of a nanomechanical resonator. Nature, 2015, 520, 522-525.	27.8	163
36	Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 2016, 10, 489-496.	31.4	161

#	Article	IF	CITATIONS
37	Cavity quantum electrodynamics with atom-like mirrors. Nature, 2019, 569, 692-697.	27.8	160
38	Mechanical Oscillation and Cooling Actuated by the Optical Gradient Force. Physical Review Letters, 2009, 103, 103601.	7.8	158
39	Nano-acoustic resonator with ultralong phonon lifetime. Science, 2020, 370, 840-843.	12.6	156
40	Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots. Optics Express, 2006, 14, 1094.	3.4	151
41	Coherent interference effects in a nano-assembled diamond NV center cavity-QED system. Optics Express, 2009, 17, 8081.	3.4	148
42	Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP. Journal of Lightwave Technology, 1999, 17, 2082-2088.	4.6	146
43	Optical and mechanical design of a "zipper―photonic crystal optomechanical cavity. Optics Express, 2009, 17, 3802.	3.4	141
44	Rayleigh scattering, mode coupling, and optical loss in silicon microdisks. Applied Physics Letters, 2004, 85, 3693-3695.	3.3	134
45	Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Applied Physics Letters, 2005, 86, 071103.	3.3	132
46	Optomechanical creation of magnetic fields for photons on a lattice. Optica, 2015, 2, 635.	9.3	131
47	Diamond optomechanical crystals. Optica, 2016, 3, 1404.	9.3	125
48	Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Applied Physics Letters, 2010, 97, .	3.3	118
49	Mode coupling and cavity–quantum-dot interactions in a fiber-coupled microdisk cavity. Physical Review A, 2007, 75, .	2.5	114
50	Integration of fiber-coupled high-Q SiNx microdisks with atom chips. Applied Physics Letters, 2006, 89, 131108.	3.3	112
51	Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1155.	2.1	108
52	Snowflake phononic topological insulator at the nanoscale. Physical Review B, 2018, 97, .	3.2	108
53	Pseudomagnetic fields for sound at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3390-E3395.	7.1	102
54	An optical fiber-taper probe for wafer-scale microphotonic device characterization. Optics Express, 2007, 15, 4745.	3.4	101

#	Article	IF	CITATIONS
55	Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes. PRX Quantum, 2022, 3, .	9.2	101
56	Efficient input and output fiber coupling to a photonic crystal waveguide. Optics Letters, 2004, 29, 697.	3.3	99
57	Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions. Applied Physics Letters, 2014, 104, .	3.3	97
58	Optical-fiber-based measurement of an ultrasmall volume high-Qphotonic crystal microcavity. Physical Review B, 2004, 70, .	3.2	96
59	Nanoscale quantum dot infrared sensors with photonic crystal cavity. Applied Physics Letters, 2006, 88, 151104.	3.3	92
60	Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap. Optics Express, 2007, 15, 5948.	3.4	90
61	Subradiant states of quantum bits coupled to a one-dimensional waveguide. New Journal of Physics, 2019, 21, 025003.	2.9	90
62	Silicon optomechanical crystal resonator at millikelvin temperatures. Physical Review A, 2014, 90, .	2.5	89
63	Quantum Electrodynamics in a Topological Waveguide. Physical Review X, 2021, 11, .	8.9	89
64	Measuring the role of surface chemistry in silicon microphotonics. Applied Physics Letters, 2006, 88, 131114.	3.3	87
65	Pulsed Excitation Dynamics of an Optomechanical Crystal Resonator near Its Quantum Ground State of Motion. Physical Review X, 2015, 5, .	8.9	84
66	Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities. IEEE Journal of Quantum Electronics, 1999, 35, 1168-1175.	1.9	82
67	Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals. Optics Express, 2009, 17, 20078.	3.4	81
68	Superconducting metamaterials for waveguide quantum electrodynamics. Nature Communications, 2018, 9, 3706.	12.8	81
69	Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots. Applied Physics Letters, 2005, 86, 151106.	3.3	77
70	High-Q double-disk microcavities for cavity optomechanics. Optics Express, 2009, 17, 20911.	3.4	77
71	Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing. Applied Physics Letters, 2004, 84, 3990-3992.	3.3	76
72	Laser noise in cavity-optomechanical cooling and thermometry. New Journal of Physics, 2013, 15, 035007.	2.9	76

#	Article	IF	CITATIONS
73	Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Applied Physics Letters, 2013, 103, .	3.3	76
74	Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap. Optics Express, 2011, 19, 5658.	3.4	73
75	Position-Squared Coupling in a Tunable Photonic Crystal Optomechanical Cavity. Physical Review X, 2015, 5, .	8.9	72
76	Lithographic tuning of a two-dimensional photonic crystal laser array. IEEE Photonics Technology Letters, 2000, 12, 1126-1128.	2.5	70
77	On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. Optics Express, 2011, 19, 11584.	3.4	70
78	Silicon-chip source of bright photon pairs. Optics Express, 2015, 23, 20884.	3.4	69
79	Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals. Optics Express, 2003, 11, 579.	3.4	63
80	Surface-plasmon mode hybridization in subwavelength microdisk lasers. Applied Physics Letters, 2009, 95, .	3.3	63
81	Photonic crystals for confining, guiding, and emitting light. IEEE Nanotechnology Magazine, 2002, 1, 4-11.	2.0	62
82	A proposal for highly tunable optical parametric oscillation in silicon micro-resonators. Optics Express, 2008, 16, 10596.	3.4	62
83	Photonic microstructures as laser mirrors. Optical Engineering, 1998, 37, 1143.	1.0	61
84	Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures. Applied Physics Letters, 2007, 90, 031114.	3.3	61
85	Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 2274.	2.1	60
86	Nonlinear Radiation Pressure Dynamics in an Optomechanical Crystal. Physical Review Letters, 2015, 115, 233601.	7.8	60
87	Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers. Applied Physics Letters, 2004, 85, 4-6.	3.3	59
88	Enhancement of Mechanical <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> Factors by Optical Trapping. Physical Review Letters, 2012, 108, 214302.	7.8	57
89	Quantum back-action in measurements of zero-point mechanical oscillations. Physical Review A, 2012, 86, .	2.5	56
90	Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nature Communications, 2020, 11, 3373.	12.8	56

#	Article	IF	CITATIONS
91	Growth, processing, and optical properties of epitaxial Er_20_3 on silicon. Optics Express, 2008, 16, 19649.	3.4	55
92	Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Optics Express, 2015, 23, 3196.	3.4	52
93	Feasibility of detecting single atoms using photonic bandgap cavities. Nanotechnology, 2004, 15, S556-S561.	2.6	51
94	Fabrication-tolerant high quality factor photonic crystal microcavities. Optics Express, 2004, 12, 1458.	3.4	51
95	Electrostatically tunable optomechanical "zipper―cavity laser. Applied Physics Letters, 2010, 97, .	3.3	51
96	Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors. Optics Express, 2010, 18, 3672.	3.4	46
97	Slot-mode-coupled optomechanical crystals. Optics Express, 2012, 20, 24394.	3.4	45
98	Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction. Optics Express, 2013, 21, 11227.	3.4	44
99	Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths. Applied Physics Letters, 1999, 74, 1522-1524.	3.3	40
100	Telecom-Band Quantum Optics with Ytterbium Atoms and Silicon Nanophotonics. Physical Review Applied, 2019, 11, .	3.8	39
101	Accurate measurement of scattering and absorption loss in microphotonic devices. Optics Letters, 2007, 32, 2954.	3.3	37
102	Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 629.	2.1	35
103	Photonic bandgap disk laser. Electronics Letters, 1999, 35, 569.	1.0	33
104	Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis. Physical Review B, 2003, 68, .	3.2	30
105	Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides. Physical Review B, 2005, 72, .	3.2	30
106	Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x^2-coupling. Optics Express, 2016, 24, 21308.	3.4	30
107	Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology, 2019, 14, 334-339.	31.5	30
108	Tailoring of the resonant mode properties of optical nanocavities in two-dimensional photonic crystal slab waveguides. Journal of Optics, 2001, 3, S161-S170.	1.5	29

#	Article	IF	CITATIONS
109	Polarization properties of dipolelike defect modes in photonic crystal nanocavities. Optics Letters, 2002, 27, 339.	3.3	29
110	Experimental demonstration of evanescent coupling from optical fibre tapers to photonic crystal waveguides. Electronics Letters, 2003, 39, 842.	1.0	29
111	Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity. Optics Express, 2009, 17, 15726.	3.4	27
112	Single quantum dot spectroscopy using a fiber taper waveguide near-field optic. Applied Physics Letters, 2007, 91, 091102.	3.3	25
113	Topological phonon transport in an optomechanical system. Nature Communications, 2022, 13, .	12.8	25
114	Collapse and Revival of an Artificial Atom Coupled to a Structured Photonic Reservoir. Physical Review X, 2021, 11, .	8.9	24
115	Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals. Physical Review B, 2003, 68, .	3.2	22
116	Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability. Optics Express, 2010, 18, 7872.	3.4	22
117	Surface encapsulation for low-loss silicon photonics. Applied Physics Letters, 2007, 91, 131117.	3.3	20
118	Multispectral Quantum Dots-in-a-Well Infrared Detectors Using Plasmon Assisted Cavities. IEEE Journal of Quantum Electronics, 2010, 46, 1051-1057.	1.9	20
119	Al transmon qubits on silicon-on-insulator for quantum device integration. Applied Physics Letters, 2017, 111, .	3.3	20
120	Investigations of a coherently driven semiconductor optical cavity QED system. Physical Review A, 2008, 78, .	2.5	19
121	Adiabatic self-tuning in a silicon microdisk optical resonator. Optics Express, 2008, 16, 14801.	3.4	17
122	Design of tunable GHz-frequency optomechanical crystal resonators. Optics Express, 2016, 24, 11407.	3.4	17
123	Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform. Physical Review Applied, 2016, 6, .	3.8	16
124	Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser. Applied Physics Letters, 2004, 84, 4164-4166.	3.3	13
125	Demonstration of air-guided quantum cascade lasers without top claddings. Optics Express, 2007, 15, 14861.	3.4	12
126	Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 875.	1.6	10

1

#	Article	IF	CITATIONS
127	An optical-fiber-based probe for photonic crystal microcavities. IEEE Journal on Selected Areas in Communications, 2005, 23, 1321-1329.	14.0	10
128	Fabrication technologies for quantum cascade photonic-crystal microlasers. Nanotechnology, 2004, 15, 675-681.	2.6	9
129	Proof-of-principle of surface detection with air-guided quantum cascade lasers. Optics Express, 2008, 16, 6387.	3.4	7
130	High temperature cavity polaritons in epitaxial Er2O3 on silicon. Applied Physics Letters, 2009, 94, 131103.	3.3	7
131	Optomechanical Crystal Devices. , 2014, , 195-231.		6
132	Coupling single NV centers in diamond to optical microcavities. , 2008, , .		4
133	Photonic crystal microcavities for chip-based cavity QED. Physica Status Solidi (B): Basic Research, 2005, 242, 1187-1191.	1.5	2
134	Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap. , 2007, , .		2
135	Ultra-Low-Loss Optical Delay Line on a Silicon Chip. , 2011, , .		2
136	Passive Modification of Free Carrier Lifetime in High-Q Silicon-on-Insulator Optics. , 2009, , .		2
137	Sensitive Phonon Detection in a Spiderweb Optomechanical Resonator. , 2010, , .		2
138	Nonlinear optics in high-Q SOI optical microcavities. , 2005, , .		2
139	Phonon Laser Action in a Tunable, Two-level System. , 2010, , .		2
140	Quantum dot photonic crystal detectors. , 2006, , .		1
141	Quantum Cascade Microdisk Lasers for Mid Infrared Intra-Cavity Sensing. , 2007, , .		1
142	Playing with atoms. Nature Photonics, 2007, 1, 615-616.	31.4	1
143	Optomechanics of strongly-coupled stacked monolithic microdisks. , 2008, , .		1

Mechanical Trapping in a Quadratically Coupled Optomechanical Double Disk., 2011,,.

0

#	Article	IF	CITATIONS
145	Tunable 2D Photonic Crystal Cavities for Cavity Electro-Optomechanics. , 2011, , .		1
146	Trapped atoms in one-dimensional photonic crystals. , 2013, , .		1
147	Self-generated optical modulation in a high-Q SOI microdisk resonator. , 2005, , .		1
148	Electromagnetically Induced Transparency and Slow Light with Optomechanics. , 2011, , .		1
149	Photon-Pair Comb Generation in a Silicon Microdisk Resonator. , 2013, , .		1
150	Guest Editorial Nanotechnologies for Communications. IEEE Journal on Selected Areas in Communications, 2005, 23, 1305-1307.	14.0	0
151	Loss characterization and surface passivation in silicon microphotonics. , 2006, , .		0
152	Designing high-Q silicon-on-insulator optical resonators for planar device integration. , 2006, , .		0
153	Quantum cascade photonic crystal lasers: Design, fabrication, and applications. , 2006, , .		0
154	Investigation of ultrasmall volume microdisk cavities with embedded quantum dots. , 2006, , .		0
155	Hybrid integration of fiber pigtailed silicon nitride microcavities with atom-chips for cavity QED applications. , 2006, , .		0
156	Optical-fiber-based probing of semiconductor microcavity-quantum-dot systems at cryogenic temperatures. , 2007, , .		0
157	Photonic Crystal Lasers. , 2007, , .		0
158	Stacked integrated double-disks for cavity optomechanics. , 2009, , .		0
159	Large Optical Springs in Picogram-Scale Optomechanical Oscillators. , 2009, , .		0
160	Electrostatic tuning of optomechanical cavities to semiconductor quantum dots. , 2011, , .		0
161	Ultra-high-Q micro-cavity on a silicon chip. , 2011, , .		0

162 Ultra-low-loss whispering gallery delay lines and resonators on a silicon chip. , 2011, , .

#	Article	IF	CITATIONS
163	Optomechanical crystals and their quantum optical applications. , 2011, , .		Ο
164	27-Meter-Long Ultra-Low-Loss Optical Delay Line on a Silicon Chip. , 2012, , .		0
165	Optomechanical crystals for quantum photon and phonon circuits. , 2012, , .		0
166	Optomechanical crystals and their quantum optical applications. , 2012, , .		0
167	Fiber-coupled, high-Q AlGaAs microdisks with embedded quantum dots. , 2005, , .		0
168	Quantum Cascade Photonic Crystal Microlasers for "Intra-Cavity" Mid-IR Spectroscopy of Biomolecules on a Chip. , 2006, , .		0
169	Microphotonic Technologies for Chip-Scale Cavity QED. , 2006, , .		0
170	Coherent optical spectroscopy of a semiconductor quantum dot cavity QED system in the strong coupling regime. , 2008, , .		0
171	Optomechanically tunable photonic crystals for cavity QED. , 2009, , .		Ο
172	Surface Plasmon Waveguide Mode Hybridization and Lasing in Sub-wavelength Microdisks at $1.3 {\hat A} \mu m$, 2009, , .		0
173	Optical and Mechanical Design of a "Zipper―Photonic Crystal Optomechanical Cavity. , 2009, , .		0
174	Multi-Spectral Surface-Plasmon Resonant Infrared Detectors. , 2009, , .		0
175	Demonstration of Quasi-2D Optomechanical Cavities Within a Full Bandgap Phononic Crystal. , 2010, , .		0
176	Force-Mediated Parametric Generation in Nano-Optomechanical Structures. , 2010, , .		0
177	Cavity optomechanics and optomechanical crystals. , 2010, , .		0
178	Towards on-chip tunable nanolasers based on optomechanical zipper cavities. , 2010, , .		0
179	Phonon Lasers in Cavity Optomechanics. , 2010, , .		0
180	Highly Coherent, Microcavity Brillouin Laser on Silicon. , 2011, , .		0

Highly Coherent, Microcavity Brillouin Laser on Silicon. , 2011, , . 180

#	Article	IF	CITATIONS
181	Ultra-High-Q Micro-Cavity on a Silicon Chip. , 2011, , .		0
182	Microcavity Brillouin Laser with High Coherence. , 2012, , .		0
183	Ultra-High-Q Wedge Resonators with Precise FSR control. , 2012, , .		0
184	Ultra-Bright Photon-Pair Generation on a Silicon Chip. , 2012, , .		0
185	High-Purity Heralded Single Photons on a Silicon Chip. , 2013, , .		0
186	Si3N4 nanobeam optomechanical crystals. , 2013, , .		0
187	High-efficiency, monolithic coupling to optomechanical cavities for quantum-limited position detection. , 2013, , .		0
188	Integrated silicon optomechanical cavity-waveguide devices for coherent photonic-microwave signal processing. , 2015, , .		0
189	Diamond optomechanical crystals in the resolved-sideband regime. , 2016, , .		0
190	Nonlinear single sideband microwave to optical conversion using an electro-optic WGM-resonator. , 2016, , .		0
191	Single sideband microwave to optical photon conversion $\hat{a} \in \hat{~}$ an electro-optic realization. , 2017, , .		0
192	Quasi-2D Optomechanical Crystal Cavity for Quantum Optomechanics. , 2019, , .		0