Tiago Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3152673/publications.pdf

Version: 2024-02-01

186265 149698 3,345 79 28 56 citations g-index h-index papers 93 93 93 4756 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Counting on natural products for drug design. Nature Chemistry, 2016, 8, 531-541.	13.6	879
2	Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4067-4072.	7.1	196
3	Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry, 2019, 3, 589-604.	30.2	173
4	Chemically Advanced Template Search (CATS) for Scaffoldâ€Hopping and Prospective Target Prediction for â€~Orphan' Molecules. Molecular Informatics, 2013, 32, 133-138.	2.5	132
5	Revealing the macromolecular targets of complex natural products. Nature Chemistry, 2014, 6, 1072-1078.	13.6	114
6	Vinyl Ether/Tetrazine Pair for the Traceless Release of Alcohols in Cells. Angewandte Chemie - International Edition, 2017, 56, 243-247.	13.8	100
7	Drug Screen Targeted at Plasmodium Liver Stages Identifies a Potent Multistage Antimalarial Drug. Journal of Infectious Diseases, 2012, 205, 1278-1286.	4.0	97
8	Accessing New Chemical Entities through Microfluidic Systems. Angewandte Chemie - International Edition, 2014, 53, 5750-5758.	13.8	86
9	Multiâ€Objective Molecular De Novo Design by Adaptive Fragment Prioritization. Angewandte Chemie - International Edition, 2014, 53, 4244-4248.	13.8	76
10	Chemoselective Installation of Amine Bonds on Proteins through Aza-Michael Ligation. Journal of the American Chemical Society, 2017, 139, 18365-18375.	13.7	74
11	Targeting the Liver Stage of Malaria Parasites: A Yet Unmet Goal. Journal of Medicinal Chemistry, 2012, 55, 995-1012.	6.4	73
12	Combining Onâ€Chip Synthesis of a Focused Combinatorial Library with Computational Target Prediction Reveals Imidazopyridine GPCR Ligands. Angewandte Chemie - International Edition, 2014, 53, 582-585.	13.8	66
13	Machine intelligence decrypts \hat{I}^2 -lapachone as an allosteric 5-lipoxygenase inhibitor. Chemical Science, 2018, 9, 6899-6903.	7.4	64
14	Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents. Chemical Society Reviews, 2016, 45, 6130-6137.	38.1	57
15	Revealing the Macromolecular Targets of Fragmentâ€Like Natural Products. Angewandte Chemie - International Edition, 2015, 54, 10516-10520.	13.8	54
16	Computational advances in combating colloidal aggregation in drug discovery. Nature Chemistry, 2019, 11, 402-418.	13.6	51
17	Evaluation guidelines for machine learning tools in the chemical sciences. Nature Reviews Chemistry, 2022, 6, 428-442.	30.2	49
18	Facts and Figures on Materials Science and Nanotechnology Progress and Investment. ACS Nano, 2021, 15, 15940-15952.	14.6	48

#	Article	IF	CITATIONS
19	From Complex Natural Products to Simple Synthetic Mimetics by Computational De Novo Design. Angewandte Chemie - International Edition, 2016, 55, 6789-6792.	13.8	42
20	Adaptive Optimization of Chemical Reactions with Minimal Experimental Information. Cell Reports Physical Science, 2020, 1, 100247.	5.6	42
21	Multidimensional Deâ€Novo Design Reveals 5â€HT _{2B} Receptorâ€Selective Ligands. Angewandte Chemie - International Edition, 2015, 54, 1551-1555.	13.8	39
22	Fragmentâ€Based Deâ€Novo Design Reveals a Smallâ€Molecule Inhibitor of <i>Helicobacter Pylori</i> HtrA. Angewandte Chemie - International Edition, 2015, 54, 10244-10248.	13.8	37
23	Unveiling (â°')â€Englerinâ€A as a Modulator of Lâ€Type Calcium Channels. Angewandte Chemie - International Edition, 2016, 55, 11077-11081.	13.8	37
24	Machine learning for target discovery in drug development. Current Opinion in Chemical Biology, 2020, 56, 16-22.	6.1	34
25	Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression. ACS Central Science, 2021, 7, 868-881.	11.3	34
26	New hope in the fight against malaria?. Future Medicinal Chemistry, 2011, 3, 1-3.	2.3	31
27	De Novo Fragment Design for Drug Discovery and Chemical Biology. Angewandte Chemie - International Edition, 2015, 54, 15079-15083.	13.8	30
28	Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point. Organic and Biomolecular Chemistry, 2017, 15, 9275-9282.	2.8	30
29	Design, synthesis and structure–activity relationships of (1H-pyridin-4-ylidene)amines as potential antimalarials. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3476-3480.	2.2	29
30	Targeting Dynamic Pockets of HIV-1 Protease by Structure-Based Computational Screening for Allosteric Inhibitors. Journal of Chemical Information and Modeling, 2014, 54, 987-991.	5.4	29
31	The good, the bad, and the ugly in chemical and biological data for machine learning. Drug Discovery Today: Technologies, 2019, 32-33, 3-8.	4.0	27
32	Steering Target Selectivity and Potency by Fragmentâ€Based De Novo Drug Design. Angewandte Chemie - International Edition, 2013, 52, 10006-10009.	13.8	23
33	De novo design and optimization of Aurora A kinase inhibitors. Chemical Science, 2013, 4, 1229.	7.4	23
34	Drugs by Numbers: Reactionâ€Driven De Novo Design of Potent and Selective Anticancer Leads. Angewandte Chemie - International Edition, 2013, 52, 4676-4681.	13.8	22
35	Development of Antibodyâ€Directed Therapies: <i>Quo Vadis</i> ?. Angewandte Chemie - International Edition, 2018, 57, 2032-2034.	13.8	22
36	Quinolin-4($1 < i > H < / i >$)-imines are Potent Antiplasmodial Drugs Targeting the Liver Stage of Malaria. Journal of Medicinal Chemistry, 2013, 56, 4811-4815.	6.4	21

#	Article	IF	CITATIONS
37	A Water-Bridged Cysteine-Cysteine Redox Regulation Mechanism in Bacterial Protein Tyrosine Phosphatases. CheM, 2017, 3, 665-677.	11.7	18
38	Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects. Cell Metabolism, 2020, 31, 1120-1135.e7.	16.2	18
39	Controlled masking and targeted release of redox-cycling ortho-quinones via a C–C bond-cleaving 1,6-elimination. Nature Chemistry, 2022, 14, 754-765.	13.6	18
40	A quantum mechanical study of novel potential inhibitors of cytochrome <i>bc</i> ₁ as antimalarial compounds. International Journal of Quantum Chemistry, 2011, 111, 1196-1207.	2.0	16
41	Combinatorial chemistry by ant colony optimization. Future Medicinal Chemistry, 2014, 6, 267-280.	2.3	16
42	Flashback Forward: Reaction-Driven De Novo Design of Bioactive Compounds. Synlett, 2014, 25, 170-178.	1.8	14
43	Flavones as isosteres of 4(1H)-quinolones: Discovery of ligand efficient and dual stage antimalarial lead compounds. European Journal of Medicinal Chemistry, 2013, 69, 872-880.	5.5	13
44	From Virtual Screening to Bioactive Compounds by Visualizing and Clustering of Chemical Space. Molecular Informatics, 2012, 31, 21-26.	2.5	12
45	The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B activity. Bioorganic Chemistry, 2020, 100, 103927.	4.1	12
46	Exploring the Molecular Basis of Q _o <i>bo</i> ₁ Complex Inhibitors Activity to Find Novel Antimalarials Hits. Molecular Informatics, 2013, 32, 659-670.	2.5	11
47	Von komplexen Naturstoffen zu synthetisch leicht zugĤglichen Mimetika mithilfe von computergestÃ1⁄4tztem Deâ€novoâ€Design. Angewandte Chemie, 2016, 128, 6901-6904.	2.0	11
48	Combating small-molecule aggregation with machine learning. Cell Reports Physical Science, 2021, 2, 100573.	5.6	11
49	Identification of new antimalarial leads by use of virtual screening against cytochrome bc1. Bioorganic and Medicinal Chemistry, 2011, 19, 6302-6308.	3.0	10
50	Repurposing de novo designed entities reveals phosphodiesterase 3B and cathepsin L modulators. Chemical Communications, 2015, 51, 7478-7481.	4.1	10
51	Dissecting celastrol with machine learning to unveil dark pharmacology. Chemical Communications, 2019, 55, 6369-6372.	4.1	10
52	Designing Multiâ€ŧarget Compound Libraries with Gaussian Process Models. Molecular Informatics, 2016, 35, 192-198.	2.5	9
53	Augmenting Adaptive Machine Learning with Kinetic Modeling for Reaction Optimization. Journal of Organic Chemistry, 2021, 86, 14192-14198.	3.2	9
54	Discovery of 2,4-dimethoxypyridines as novel autophagy inhibitors. Tetrahedron, 2018, 74, 4531-4537.	1.9	8

#	Article	IF	CITATIONS
55	Natural product–drug conjugates for modulation of TRPV1-expressing tumors. Bioorganic and Medicinal Chemistry, 2019, 27, 2531-2536.	3.0	8
56	Unveiling (â^')â€Englerinâ€A as a Modulator of Lâ€Type Calcium Channels. Angewandte Chemie, 2016, 128, 11243-11247.	2.0	7
57	The missing link. Nature Chemistry, 2016, 8, 1088-1090.	13.6	7
58	Exploration of Long-Chain Vitamin E Metabolites for the Discovery of a Highly Potent, Orally Effective, and Metabolically Stable 5-LOX Inhibitor that Limits Inflammation. Journal of Medicinal Chemistry, 2021, 64, 11496-11526.	6.4	7
59	Coping with Polypharmacology by Computational Medicinal Chemistry. Chimia, 2014, 68, 648.	0.6	6
60	Structural and biophysical insights into the mode of covalent binding of rationally designed potent BMX inhibitors. RSC Chemical Biology, 2020, 1, 251-262.	4.1	6
61	Significance estimation for sequence-based chemical similarity searching (PhAST) and application to AuroraA kinase inhibitors. Future Medicinal Chemistry, 2012, 4, 1897-1906.	2.3	5
62	Microwave-Assisted Wittig Reaction of Semistabilized Nitro-Substituted Benzyltriphenyl-Phosphorous Ylides with Aldehydes in Phase-Transfer Conditions. Synthetic Communications, 2012, 42, 747-755.	2.1	5
63	Machine learning for next-generation nanotechnology in healthcare. Matter, 2021, 4, 3078-3080.	10.0	5
64	Bis{(<i>E</i>)-3-[(diethylmethylammonio)methyl]- <i>N</i> -[3-(<i>N</i> , <i>N</i> -dimethylsulfamoyl)-1-methylpy tetraiodide pentahydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o283-o284.	ridin-4-ylid 0 . 2	dene]-4-meth 4
65	Deriving intuition in catalyst design with machine learning. CheM, 2022, 8, 15-17.	11.7	3
66	Unanticipated Acyloxymethylation of Sumatriptan Indole Nitrogen Atom and its Implications in Prodrug Design. Archiv Der Pharmazie, 2008, 341, 344-350.	4.1	2
67	Antiplasmodial Drugs in the Gas Phase: A CID and DFT Study of Quinolon- $4(\langle i \rangle 1H \langle i \rangle)$ -Imine Derivatives. Journal of the American Society for Mass Spectrometry, 2014, 25, 1650-1661.	2.8	2
68	Drug target prediction using chem- and bioinformatics. Physical Sciences Reviews, 2018, 3, .	0.8	2
69	Evaluation of linker length effects on a BET bromodomain probe. Chemical Communications, 2019, 55, 10128-10131.	4.1	2
70	A Toolbox for the Identification of Modes of Action of Natural Products. Progress in the Chemistry of Organic Natural Products, 2019, 110, 73-97.	1.1	2
71	Nuisance small molecules under a machine-learning lens. , 0, , .		2
72	Target prediction by cascaded self-organizing maps for ligand de-orphaning and side-effect investigation. Journal of Cheminformatics, 2014, 6, .	6.1	1

TIAGO RODRIGUES

#	Article	IF	CITATIONS
73	Targeting flexibility: a structure-based computational study revealing allosteric HIV-1 protease inhibitors. Journal of Cheminformatics, 2014, 6, .	6.1	1
74	In Silico Screening. , 2015, , 141-160.		1
75	Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression. SSRN Electronic Journal, 0, , .	0.4	1
76	Go with the flow: de-orphaning focused combinatorial libraries. Journal of Cheminformatics, 2014, 6, .	6.1	0
77	Antikörpergerichtete Therapien: Quo vadis?. Angewandte Chemie, 2018, 130, 2050-2052.	2.0	0
78	11. Drug target prediction using chem- and bioinformatics. , 2020, , 291-310.		0
79	A special issue on artificial intelligence for drug discovery. Bioorganic and Medicinal Chemistry, 2022, , 116939.	3.0	0