Scott C Stark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3151549/publications.pdf Version: 2024-02-01

SCOTT C STADE

#	Article	IF	CITATIONS
1	The other side of tropical forest drought: do shallow water table regions of Amazonia act as largeâ€scale hydrological refugia from drought?. New Phytologist, 2023, 237, 714-733.	7.3	42
2	Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nature Communications, 2022, 13, 917.	12.8	20
3	Protecting Amazonia Should Focus on Protecting Indigenous, Traditional Peoples and Their Territories. Forests, 2022, 13, 16.	2.1	2
4	Towards mapping biodiversity from above: Can fusing lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic tree diversity in temperate forests?. Global Ecology and Biogeography, 2022, 31, 1440-1460.	5.8	10
5	Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach. Ecological Applications, 2021, 31, e02230.	3.8	26
6	Deforestation and land use and land cover changes in protected areas of the Brazilian Cerrado: impacts on the fire-driven emissions of fine particulate aerosols pollutants. Remote Sensing Letters, 2021, 12, 79-92.	1.4	9
7	Legacy Effects Following Fire on Surface Energy, Water and Carbon Fluxes in Mature Amazonian Forests. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005833.	3.0	3
8	Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210094.	2.6	23
9	Relationship between Biomass Burning Emissions and Deforestation in Amazonia over the Last Two Decades. Forests, 2021, 12, 1217.	2.1	12
10	Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sensing of Environment, 2021, 264, 112582.	11.0	61
11	Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence. Forest Ecology and Management, 2021, 500, 119648.	3.2	13
12	A new era in forest restoration monitoring. Restoration Ecology, 2020, 28, 8-11.	2.9	37
13	Evaluating tropical forest classification and field sampling stratification from lidar to reduce effort and enable landscape monitoring. Forest Ecology and Management, 2020, 457, 117634.	3.2	13
14	Smoke pollution's impacts in Amazonia. Science, 2020, 369, 634-635.	12.6	28
15	Detecting successional changes in tropical forest structure using GatorEye droneâ€borne lidar. Biotropica, 2020, 52, 1155-1167.	1.6	22
16	Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants. Forests, 2020, 11, 829.	2.1	40
17	Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate. Ecosphere, 2020, 11, e03231.	2.2	24
18	Persistent effects of fragmentation on tropical rainforest canopy structure after 20Âyr of isolation. Ecological Applications, 2019, 29, e01952.	3.8	45

SCOTT C STARK

#	Article	IF	CITATIONS
19	Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling. Remote Sensing, 2019, 11, 92.	4.0	69
20	Seasonal and droughtâ€related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytologist, 2019, 222, 1284-1297.	7.3	64
21	The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 2019, 438, 34-43.	3.2	70
22	Towards high throughput assessment of canopy dynamics: The estimation of leaf area structure in Amazonian forests with multitemporal multi-sensor airborne lidar. Remote Sensing of Environment, 2019, 221, 1-13.	11.0	25
23	Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem. Forest Ecology and Management, 2019, 433, 364-375.	3.2	64
24	Ageâ€dependent leaf physiology and consequences for crownâ€scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist, 2018, 219, 870-884.	7.3	66
25	Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytologist, 2018, 217, 1507-1520.	7.3	66
26	Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytologist, 2018, 219, 914-931.	7.3	64
27	Continental-scale consequences of tree die-offs in North America: identifying where forest loss matters most. Environmental Research Letters, 2018, 13, 055014.	5.2	39
28	Prototype campaign assessment of disturbanceâ€induced tree loss effects on surface properties for atmospheric modeling. Ecosphere, 2017, 8, e01698.	2.2	5
29	Synergistic Ecoclimate Teleconnections from Forest Loss in Different Regions Structure Global Ecological Responses. PLoS ONE, 2016, 11, e0165042.	2.5	39
30	Contrasting fire damage and fire susceptibility between seasonally flooded forest and upland forest in the Central Amazon using portable profiling LiDAR. Remote Sensing of Environment, 2016, 184, 153-160.	11.0	49
31	Forest structure along a 600Âkm transect of natural disturbances and seasonality gradients in centralâ€southern Amazonia. Journal of Ecology, 2016, 104, 1335-1346.	4.0	30
32	Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 2016, 351, 972-976.	12.6	336
33	Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change. Landscape Ecology, 2016, 31, 181-194.	4.2	53
34	Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography. Ecology Letters, 2015, 18, 636-645.	6.4	60
35	Disturbance size and severity covary in small and mid-size wind disturbances in Pennsylvania northern hardwoods forests. Forest Ecology and Management, 2013, 302, 273-279.	3.2	12
36	Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecology Letters, 2012, 15, 1406-1414.	6.4	180

SCOTT C STARK

#	Article	IF	CITATIONS
37	Response to Coomes & Allen (2009)â€~Testing the metabolic scaling theory of tree growth'. Journal of Ecology, 2011, 99, 741-747.	4.0	9
38	Microbially Mediated Plant Functional Traits. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 23-46.	8.3	447
39	Light reduction predicts widespread patterns of dominance between asters and goldenrods. Plant Ecology, 2008, 199, 65-76.	1.6	14
40	Follow Thompson's map to turn biology from a science into a Science. Nature, 2007, 446, 611-611.	27.8	9
41	A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature, 2007, 449, 218-222.	27.8	219
42	A null model of exotic plant diversity tested with exotic and native species-area relationships. Ecology Letters, 2006, 9, 136-141.	6.4	61