
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3150844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the redox potential of tyrosine-histidine bioinspired assemblies. Photosynthesis Research, 2022, 151, 185-193.	1.6	4
2	Dual Singlet Excited-State Quenching Mechanisms in an Artificial Caroteno-Phthalocyanine Light Harvesting Antenna. ACS Physical Chemistry Au, 2022, 2, 59-67.	1.9	3
3	Ir(III)-Naphthoquinone complex as a platform for photocatalytic activity. Journal of Photochemistry and Photobiology, 2022, 9, 100098.	1.1	2
4	Electrochemically Driven Photosynthetic Electron Transport in Cyanobacteria Lacking Photosystem II. Journal of the American Chemical Society, 2022, 144, 2933-2942.	6.6	20
5	Concerted Electron-Nuclear Motion in Proton-Coupled Electron Transfer-Driven Grotthuss-Type Proton Translocation. Journal of Physical Chemistry Letters, 2022, , 4479-4485.	2.1	4
6	Multi PCET in symmetrically substituted benzimidazoles. Chemical Science, 2021, 12, 12667-12675.	3.7	5
7	Electron–Nuclear Dynamics Accompanying Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2021, 143, 3104-3112.	6.6	21
8	Models to study photoinduced multiple proton coupled electron transfer processes. Journal of Porphyrins and Phthalocyanines, 2021, 25, 674-682.	0.4	4
9	PCET-Based Ligand Limits Charge Recombination with an Ir(III) Photoredox Catalyst. Journal of the American Chemical Society, 2021, 143, 13034-13043.	6.6	20
10	HYSCORE and DFT Studies of Proton-Coupled Electron Transfer in a Bioinspired Artificial Photosynthetic Reaction Center. IScience, 2020, 23, 101366.	1.9	2
11	One Electron Multiple Proton Transfer in Model Organic Donor–Acceptor Systems: Implications for High-Frequency EPR. Applied Magnetic Resonance, 2020, 51, 977-991.	0.6	1
12	Role of Intact Hydrogen-Bond Networks in Multiproton-Coupled Electron Transfer. Journal of the American Chemical Society, 2020, 142, 21842-21851.	6.6	23
13	Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires. Chemical Science, 2020, 11, 3820-3828.	3.7	23
14	Ultrafast Dynamics of Nonrigid Zinc-Porphyrin Arrays Mimicking the Photosynthetic "Special Pair― Journal of Physical Chemistry Letters, 2020, 11, 3443-3450.	2.1	11
15	Proton-Coupled Electron Transfer Drives Long-Range Proton Translocation in Bioinspired Systems. Journal of the American Chemical Society, 2019, 141, 14057-14061.	6.6	33
16	Design and synthesis of benzimidazole phenol-porphyrin dyads for the study of bioinspired photoinduced proton-coupled electron transfer. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1336-1345.	0.4	7
17	Proton-Coupled Electron Transfer in Artificial Photosynthetic Systems. Accounts of Chemical Research, 2018, 51, 445-453.	7.6	114
18	Controlling Proton-Coupled Electron Transfer in Bioinspired Artificial Photosynthetic Relays. Journal of the American Chemical Society, 2018, 140, 15450-15460.	6.6	52

#	Article	IF	CITATIONS
19	Concerted One-Electron Two-Proton Transfer Processes in Models Inspired by the Tyr-His Couple of Photosystem II. ACS Central Science, 2017, 3, 372-380.	5.3	80
20	Artificial photosynthetic antennas and reaction centers. Comptes Rendus Chimie, 2017, 20, 296-313.	0.2	41
21	Kinetic isotope effect of proton-coupled electron transfer in a hydrogen bonded phenol—pyrrolidino[60]fullerene. Photochemical and Photobiological Sciences, 2015, 14, 2147-2150.	1.6	7
22	Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1681-1686.	3.3	133
23	Building and testing correlations for the estimation of oneâ€electron reduction potentials of a diverse set of organic molecules. Journal of Physical Organic Chemistry, 2015, 28, 320-328.	0.9	24
24	Design, synthesis and photophysical studies of phenylethynyl-bridged phthalocyanine-fullerene dyads. Journal of Porphyrins and Phthalocyanines, 2015, 19, 934-945.	0.4	6
25	Charge-Transfer Dynamics of Fluorescent Dye-Sensitized Electrodes under Applied Biases. Journal of Physical Chemistry Letters, 2015, 6, 2688-2693.	2.1	10
26	Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the United States of America, 2015, 112, 8529-8536.	3.3	751
27	Spectroscopic Analysis of a Biomimetic Model of Tyr _Z Function in PSII. Journal of Physical Chemistry B, 2015, 119, 12156-12163.	1.2	10
28	Multiporphyrin Arrays with π–π Interchromophore Interactions. Journal of the American Chemical Society, 2015, 137, 245-258.	6.6	32
29	A bioinspired redox relay that mimics radical interactions of the Tyr–His pairs of photosystem II. Nature Chemistry, 2014, 6, 423-428.	6.6	133
30	Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 2014, 513, 261-265.	13.7	403
31	Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad. Physical Chemistry Chemical Physics, 2013, 15, 4775.	1.3	31
32	Selective oxidative synthesis of <i>meso</i> -beta fused porphyrin dimers. Journal of Porphyrins and Phthalocyanines, 2013, 17, 247-251.	0.4	15
33	New light-harvesting roles of hot and forbidden carotenoid states in artificial photosynthetic constructs. Chemical Science, 2012, 3, 2052.	3.7	21
34	Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15612-15616.	3.3	280
35	Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15578-15583.	3.3	110
36	On the role of excitonic interactions in carotenoid–phthalocyanine dyads and implications for photosynthetic regulation. Photosynthesis Research, 2012, 111, 237-243.	1.6	22

#	Article	IF	CITATIONS
37	A porphyrin-stabilized iridium oxide water oxidation catalyst. Canadian Journal of Chemistry, 2011, 89, 152-157.	0.6	18
38	Carotenoid Photoprotection in Artificial Photosynthetic Antennas. Journal of the American Chemical Society, 2011, 133, 7007-7015.	6.6	70
39	Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science, 2011, 332, 805-809.	6.0	1,369
40	Effects of Protonation State on a Tyrosineâ^'Histidine Bioinspired Redox Mediatorâ€. Journal of Physical Chemistry B, 2010, 114, 14450-14457.	1.2	61
41	A Bioinspired Construct That Mimics the Proton Coupled Electron Transfer between P680 ^{•+} and the Tyr _Z -His190 Pair of Photosystem II. Journal of the American Chemical Society, 2008, 130, 10466-10467.	6.6	156
42	Porphyrin-Based Hole Conducting Electropolymer. Chemistry of Materials, 2008, 20, 135-142.	3.2	65
43	Mimicking Photosynthetic Electron and Energy Transfer. Advances in Photochemistry, 2007, , 1-65.	0.4	66
44	Energy Transfer, Excited-State Deactivation, and Exciplex Formation in Artificial Caroteno-Phthalocyanine Light-Harvesting Antennasâ€. Journal of Physical Chemistry B, 2007, 111, 6868-6877.	1.2	62
45	Driving Force and Electronic Coupling Effects on Photoinduced Electron Transfer in a Fullerene-based Molecular Triad¶. Photochemistry and Photobiology, 2007, 72, 598-611.	1.3	8
46	High-efficiency Energy Transfer from Carotenoids to a Phthalocyanine in an Artificial Photosynthetic Antenna¶. Photochemistry and Photobiology, 2007, 76, 116-121.	1.3	0
47	Charge separation and energy transfer in a caroteno–C60dyad: photoinduced electron transfer from the carotenoid excited states. Photochemical and Photobiological Sciences, 2006, 5, 1142-1149.	1.6	21
48	Tetrapyrrole Singlet Excited State Quenching by Carotenoids in an Artificial Photosynthetic Antennaâ€. Journal of Physical Chemistry B, 2006, 110, 25411-25420.	1.2	14
49	Mimicking Bacterial Photosynthesis. , 2006, , 187-210.		2
50	A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5343-5348.	3.3	125
51	Bioinspired energy conversion. Pure and Applied Chemistry, 2005, 77, 1001-1008.	0.9	14
52	Enzymeâ€assisted Reforming of Glucose to Hydrogen in a Photoelectrochemical Cell [¶] . Photochemistry and Photobiology, 2005, 81, 1015-1020.	1.3	0
53	Synthesis and photochemistry of a carotene–porphyrin–fullerene model photosynthetic reaction center. Journal of Physical Organic Chemistry, 2004, 17, 724-734.	0.9	86
54	Artificial Photosynthetic Reaction Centers with Porphyrins as Primary Electron Acceptorsâ€. Journal of Physical Chemistry B, 2004, 108, 10566-10580.	1.2	53

#	Article	IF	CITATIONS
55	Light Harvesting and Photoprotective Functions of Carotenoids in Compact Artificial Photosynthetic Antenna Designs. Journal of Physical Chemistry B, 2004, 108, 414-425.	1.2	86
56	Hybrid Photoelectrochemical-Fuel Cell. ACS Symposium Series, 2004, , 361-367.	0.5	1
57	Photoinduced electron transfer in a symmetrical diporphyrin–fullerene triad. Physical Chemistry Chemical Physics, 2004, 6, 5509-5515.	1.3	22
58	Stepwise Sequential and Parallel Photoinduced Charge Separation in a Porphyrinâ^'Triquinone Tetradâ€. Journal of Physical Chemistry A, 2003, 107, 3567-3575.	1.1	32
59	Correlation of fluorescence quenching in carotenoporphyrin dyads with the energy of intramolecular charge transfer states. Effect of the number of conjugated double bonds of the carotenoid moiety. Physical Chemistry Chemical Physics, 2003, 5, 469-475.	1.3	32
60	Reaction Center Models in Liquid Crystals: Identification of Paramagnetic Intermediates. Molecular Crystals and Liquid Crystals, 2003, 394, 19-30.	0.4	9
61	Efficient Energy Transfer and Electron Transfer in an Artificial Photosynthetic Antennaâ^'Reaction Center Complexâ€. Journal of Physical Chemistry A, 2002, 106, 2036-2048.	1.1	175
62	Excited state acidity of bifunctional compounds. Physical Chemistry Chemical Physics, 2002, 4, 3383-3389.	1.3	8
63	Photoinduced electron transfer in π-extended tetrathiafulvalene–porphyrin–fullerene triad molecules. Journal of Materials Chemistry, 2002, 12, 2100-2108.	6.7	71
64	The Gold Porphyrin First Excited Singlet State¶. Photochemistry and Photobiology, 2002, 76, 47-50.	1.3	6
65	Mimicking Photosynthetic Solar Energy Transduction. Accounts of Chemical Research, 2001, 34, 40-48.	7.6	2,052
66	Photoinduced Electron Transfer in Carotenoporphyrinâ^'Fullerene Triads:Â Temperature and Solvent Effects. Journal of Physical Chemistry B, 2000, 104, 4307-4321.	1.2	167
67	Pharmacokinetics of ICG and HPPH-car for the Detection of Normal and Tumor Tissue Using Fluorescence, Near-infrared Reflectance Imaging: A Case Study ¶. Photochemistry and Photobiology, 2000, 72, 94-102.	1.3	4
68	Photoinduced Electron and Proton Transfer in a Molecular Triad. Advances in Chemistry Series, 1998, , 177-218.	0.6	2
69	Light-driven production of ATP catalysed by FOF1-ATP synthase in an artificial photosynthetic membrane. Nature, 1998, 392, 479-482.	13.7	488
70	Carotenohematoporphyrins as Tumor-Imaging Dyes. Synthesis and In Vitro Photophysical Characterization. Photochemistry and Photobiology, 1998, 68, 459-466.	1.3	25
71	Magnetic Switching of Charge Separation Lifetimes in Artificial Photosynthetic Reaction Centers. Journal of the American Chemical Society, 1998, 120, 10880-10886.	6.6	115
72	STM Contrast, Electron-Transfer Chemistry, and Conduction in Molecules. Journal of Physical Chemistry B, 1997, 101, 10719-10725.	1.2	127

#	Article	IF	CITATIONS
73	Dynamics of Photoinduced Electron Transfer in a Carotenoidâ°'Porphyrinâ°'Dinitronaphthalenedicarboximide Molecular Triad. Journal of Physical Chemistry B, 1997, 101, 5214-5223.	1.2	42
74	Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Caroteneâ^'Porphyrinâ^'Fullerene Triad. Journal of the American Chemical Society, 1997, 119, 1400-1405.	6.6	356
75	Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature, 1997, 385, 239-241.	13.7	404
76	Fullerenes linked to photosynthetic pigments. Research on Chemical Intermediates, 1997, 23, 621-651.	1.3	71
77	Photoinduced Electron Transfer in a Carotenobuckminsterfullerene Dyad. Photochemistry and Photobiology, 1996, 63, 353-353.	1.3	Ο
78	Photoelectrochemistry of Langmuirâ~'Blodgett Films of Carotenoid Pigments on ITO Electrodes. The Journal of Physical Chemistry, 1996, 100, 814-821.	2.9	84
79	Coordinated Photoinduced Electron and Proton Transfer in a Molecular Triad. Journal of the American Chemical Society, 1995, 117, 1657-1658.	6.6	65
80	PHOTOINDUCED ELECTRON TRANSFER IN A CAROTENOBUCKMINSTERFULLERENE DYAD. Photochemistry and Photobiology, 1995, 62, 1009-1014.	1.3	99
81	PREPARATION AND PHOTOPHYSICAL STUDIES OF PORPHYRIN ₆₀ DYADS. Photochemistry and Photobiology, 1994, 60, 537-541.	1.3	249
82	The Photochemistry of Carotenoids: Some Photosynthetic and Photomedical Aspects. Annals of the New York Academy of Sciences, 1993, 691, 32-47.	1.8	26
83	Molecular mimicry of photosynthetic energy and electron transfer. Accounts of Chemical Research, 1993, 26, 198-205.	7.6	1,021
84	Triplet and singlet energy transfer in carotene-porphyrin dyads: role of the linkage bonds Journal of the American Chemical Society, 1992, 114, 3590-3603.	6.6	148
85	Mimicking Photosynthetic Electron Transfer. Materials Research Society Symposia Proceedings, 1990, 218, 141.	0.1	1
86	PHOTOPHYSICAL PROPERTIES OF 2â€NITROâ€5,10,15,20â€TETRAâ€pâ€TOLYLPORPHYRINS. Photochemistry and Photobiology, 1990, 51, 419-426.	1.3	79
87	A carotenoid-porphyrin-diquinone tetrad: synthesis, electrochemistry and photoinitiated electron transfer. Tetrahedron, 1989, 45, 4867-4891.	1.0	51
88	Photoinitiated Electron Transfer in Carotenoporphyrinâ€Quinone Triads: Enhanced Quantum Yields via Control of Reaction Exergonicity. Israel Journal of Chemistry, 1988, 28, 87-95.	1.0	20
89	Digital back off for computer controlled flash spectrometers. Review of Scientific Instruments, 1987, 58, 1629-1631.	0.6	35
90	Ultrafast carotenoid to pheophorbide energy transfer in a biomimetic model for antenna function in photosynthesis. Nature, 1986, 322, 570-572.	13.7	56

#	Article	IF	CITATIONS
91	A PHOTOACOUSTIC STUDY OF MORPHOLOGICAL CHANGES OCCURRING IN PLANT TISSUE CULTURES ACCOMPANYING DIFFERENTIATION. Photochemistry and Photobiology, 1985, 41, 417-419.	1.3	4
92	Photodriven charge separation in a carotenoporphyrin–quinone triad. Nature, 1984, 307, 630-632.	13.7	290
93	A PHOTOACOUSTIC DEPTH PROFILE OF β AROTENE IN SKIN. Photochemistry and Photobiology, 1984, 39, 635-640.	1.3	38
94	NMR spectra of carotenoporphyrins. Computer-assisted conformational analysis. Magnetic Resonance in Chemistry, 1984, 22, 39-46.	0.7	25
95	DETERMINATION OF THE <i>IN VIVO</i> ABSORPTION AND PHOTOSYNTHETIC PROPERTIES OF THE LICHEN <i>Acarospora schleicheri</i> USING PHOTO ACOUSTIC SPECTROSCOPY. Photochemistry and Photobiology, 1983, 38, 709-715.	1.3	32
96	Mimicry of antenna and photo-protective carotenoid functions by a synthetic carotenoporphyrin. Nature, 1981, 290, 329-332.	13.7	83
97	ENERGY TRANSFER FROM CAROTENOID POLYENES TO PORPHYRINS: A LIGHTâ€HARVESTING ANTENNA. Photochemistry and Photobiology, 1980, 32, 691-695.	1.3	82
98	Lobster shell carotenoprotein organisation in situ studied by photoacoustic spectroscopy. Nature, 1979, 278, 861-862.	13.7	7
99	Lobster shell carotenoprotein organisation in situ studied by photoacoustic spectroscopy. Nature, 1979, 279, 265-266.	13.7	39