
Ulf-Peter Apfel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3150622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation. Nature Communications, 2016, 7, 12269.	12.8	150
2	[FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chemical Society Reviews, 2021, 50, 1668-1784.	38.1	136
3	Influence of the Fe:Ni Ratio and Reaction Temperature on the Efficiency of (Fe _{<i>x</i>} Ni _{1–<i>x</i>}) ₉ S ₈ Electrocatalysts Applied in the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 987-996.	11.2	134
4	A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chemical Science, 2016, 7, 959-968.	7.4	122
5	Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide. Nature Communications, 2019, 10, 3864.	12.8	112
6	Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E209-E218.	7.1	111
7	[FeFe]-Hydrogenases: recent developments and future perspectives. Chemical Communications, 2018, 54, 5934-5942.	4.1	111
8	Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2705-14.	7.1	109
9	Local Surface Structure and Composition Control the Hydrogen Evolution Reaction on Iron Nickel Sulfides. Angewandte Chemie - International Edition, 2018, 57, 4093-4097.	13.8	104
10	Electrocatalytic Reduction of CO ₂ to Acetic Acid by a Molecular Manganese Corrole Complex. Angewandte Chemie - International Edition, 2020, 59, 10527-10534.	13.8	95
11	Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nature Communications, 2017, 8, 16115.	12.8	93
12	Niâ€Metalloid (B, Si, P, As, and Te) Alloys as Water Oxidation Electrocatalysts. Advanced Energy Materials, 2019, 9, 1900796.	19.5	93
13	Homolytic versus Heterolytic Hydrogen Evolution Reaction Steered by a Steric Effect. Angewandte Chemie - International Edition, 2020, 59, 8941-8946.	13.8	87
14	Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Twoâ€Electron and Fourâ€Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angewandte Chemie - International Edition, 2021, 60, 12742-12746.	13.8	85
15	Detection of Nitric Oxide and Nitroxyl with Benzoresorufin-Based Fluorescent Sensors. Inorganic Chemistry, 2013, 52, 3285-3294.	4.0	79
16	Crossing the Valley of Death: From Fundamental to Applied Research in Electrolysis. Jacs Au, 2021, 1, 527-535.	7.9	79
17	Preparation and Characterization of Homologous Diiron Dithiolato, Diselenato, and Ditellurato Complexes: [FeFe]-Hydrogenase Models. Organometallics, 2009, 28, 6666-6675.	2.3	76
18	Protonation/reduction dynamics at the [4Fe–4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Physical Chemistry Chemical Physics, 2018, 20, 3128-3140.	2.8	76

#	Article	IF	CITATIONS
19	Waterâ€Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 15844-15848.	13.8	76
20	Models for the Active Site in [FeFe] Hydrogenase with Iron-Bound Ligands Derived from Bis-, Tris-, and Tetrakis(mercaptomethyl)silanes. Inorganic Chemistry, 2010, 49, 10117-10132.	4.0	70
21	Bio-inspired design: bulk iron–nickel sulfide allows for efficient solvent-dependent CO ₂ reduction. Chemical Science, 2019, 10, 1075-1081.	7.4	64
22	Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8454-8459.	7.1	60
23	Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases. Nature Communications, 2018, 9, 4726.	12.8	60
24	Functionalized Sugars as Ligands towards Waterâ€ S oluble [Feâ€only] Hydrogenase Models. European Journal of Inorganic Chemistry, 2008, 2008, 5112-5118.	2.0	59
25	Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Beilstein Journal of Organic Chemistry, 2018, 14, 1436-1445.	2.2	58
26	Protonâ€Coupled Reduction of the Catalytic [4Feâ€4S] Cluster in [FeFe]â€Hydrogenases. Angewandte Chemie - International Edition, 2017, 56, 16503-16506.	13.8	56
27	From Enzymes to Functional Materials—Towards Activation of Small Molecules. Chemistry - A European Journal, 2018, 24, 1471-1493.	3.3	55
28	Metalâ€Rich Chalcogenides for Electrocatalytic Hydrogen Evolution: Activity of Electrodes and Bulk Materials. ChemElectroChem, 2020, 7, 1514-1527.	3.4	55
29	Metal orroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	54
30	[FeFe]â€Hydrogenase with Chalcogenide Substitutions at the Hâ€Cluster Maintains Full H ₂ Evolution Activity. Angewandte Chemie - International Edition, 2016, 55, 8396-8400.	13.8	53
31	Bridging Hydride at Reduced H-Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry. Journal of the American Chemical Society, 2017, 139, 12157-12160.	13.7	53
32	<i>Operando</i> Phonon Studies of the Protonation Mechanism in Highly Active Hydrogen Evolution Reaction Pentlandite Catalysts. Journal of the American Chemical Society, 2017, 139, 14360-14363.	13.7	53
33	Diiron Dichalcogenolato (Se and Te) Complexes: Models for the Active Site of [FeFe] Hydrogenase. European Journal of Inorganic Chemistry, 2011, 2011, 986-993.	2.0	50
34	Electrochemical CO ₂ Reduction: Tailoring Catalyst Layers in Gas Diffusion Electrodes. Advanced Sustainable Systems, 2021, 5, 2000088.	5.3	50
35	Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity. Dalton Transactions, 2017, 46, 16947-16958.	3.3	48
36	Introducing Waterâ€Networkâ€Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angewandte Chemie - International Edition, 2022, 61, e202114310.	13.8	46

#	Article	IF	CITATIONS
37	Electrochemical CO2 reduction - The macroscopic world of electrode design, reactor concepts & economic aspects. IScience, 2022, 25, 104011.	4.1	46
38	Sunlightâ€Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems. ChemSusChem, 2017, 10, 894-902.	6.8	44
39	Interplay between CN [–] Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases. Journal of the American Chemical Society, 2017, 139, 18222-18230.	13.7	42
40	A safety cap protects hydrogenase from oxygen attack. Nature Communications, 2021, 12, 756.	12.8	42
41	Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 28-41.	1.0	39
42	Electrochemical Investigations of the Mechanism of Assembly of the Active-Site H-Cluster of [FeFe]-Hydrogenases. Journal of the American Chemical Society, 2016, 138, 15227-15233.	13.7	38
43	How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer. Journal of the American Chemical Society, 2019, 141, 17394-17403.	13.7	38
44	Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenases. Journal of the American Chemical Society, 2020, 142, 5493-5497.	13.7	38
45	Electrocatalytic Reduction of CO ₂ to Acetic Acid by a Molecular Manganese Corrole Complex. Angewandte Chemie, 2020, 132, 10614-10621.	2.0	37
46	A Siliconâ€Heteroaromatic System as Photosensitizer for Lightâ€Driven Hydrogen Production by Hydrogenase Mimics. European Journal of Inorganic Chemistry, 2013, 2013, 4466-4472.	2.0	36
47	A sterically stabilized Fe ^I –Fe ^I semi-rotated conformation of [FeFe] hydrogenase subsite model. Dalton Transactions, 2015, 44, 1690-1699.	3.3	36
48	Synthesis and Characterization of Hydroxyâ€Functionalized Models for the Active Site in Feâ€Onlyâ€Hydrogenases. Chemistry and Biodiversity, 2007, 4, 2138-2148.	2.1	35
49	Synergistic Electrocatalytic Hydrogen Evolution in Ni/NiS Nanoparticles Wrapped in Multi-Heteroatom-Doped Reduced Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 34043-34052.	8.0	33
50	Fe/Co and Ni/Co-pentlandite type electrocatalysts for the hydrogen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 1360-1369.	14.0	33
51	Electrochemical CO2 reduction toward multicarbon alcohols - The microscopic world of catalysts & process conditions. IScience, 2022, 25, 104010.	4.1	32
52	A Novel [FeFe] Hydrogenase Model with a (SCH2)2Pâ•O Moiety. Organometallics, 2013, 32, 4523-4530.	2.3	30
53	Geometry of the Catalytic Active Site in [FeFe]-Hydrogenase Is Determined by Hydrogen Bonding and Proton Transfer. ACS Catalysis, 2019, 9, 9140-9149.	11.2	30
54	The effect of flue gas contaminants on the CO2 electroreduction to formic acid. Journal of CO2 Utilization, 2020, 42, 101315.	6.8	29

#	Article	IF	CITATIONS
55	Sustainable and rapid preparation of nanosized Fe/Ni-pentlandite particles by mechanochemistry. Chemical Science, 2020, 11, 12835-12842.	7.4	29
56	Powering Artificial Enzymatic Cascades with Electrical Energy. Angewandte Chemie - International Edition, 2020, 59, 10929-10933.	13.8	29
57	Seleno-analogues of pentlandites (Fe _{4.5} Ni _{4.5} S _{8â^`Y} Se _Y ,) Tj E 2019, 55, 8792-8795.	TQq1 1 0. 4.1	784314 rg 28
58	Oxidation of Diiron and Triiron Sulfurdithiolato Complexes: Mimics for the Active Site of [FeFe]-Hydrogenase. Chemistry and Biodiversity, 2008, 5, 2023-2041.	2.1	27
59	Tailoring the Size, Inversion Parameter, and Absorption of Phase-Pure Magnetic MgFe ₂ O ₄ Nanoparticles for Photocatalytic Degradations. ACS Applied Nano Materials, 2020, 3, 11587-11599.	5.0	27
60	Metalâ€Rich Chalcogenides as Sustainable Electrocatalysts for Oxygen Evolution and Reduction: State of the Art and Future Perspectives. European Journal of Inorganic Chemistry, 2020, 2020, 2679-2690.	2.0	27
61	Loss of Specific Active-Site Iron Atoms in Oxygen-Exposed [FeFe]-Hydrogenase Determined by Detailed X-ray Structure Analyses. Journal of the American Chemical Society, 2019, 141, 17721-17728.	13.7	26
62	Mechanistic Implications for the Ni(I)-Catalyzed Kumada Cross-Coupling Reaction. Inorganics, 2017, 5, 78.	2.7	25
63	Dual-Heteroatom-Doped Reduced Graphene Oxide Sheets Conjoined CoNi-Based Carbide and Sulfide Nanoparticles for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 40186-40193.	8.0	25
64	Aging-Associated Enzyme Human Clock-1: Substrate-Mediated Reduction of the Diiron Center for 5-Demethoxyubiquinone Hydroxylation. Biochemistry, 2013, 52, 2236-2244.	2.5	23
65	Bioinspired iron porphyrins with appended poly-pyridine/amine units for boosted electrocatalytic CO2 reduction reaction. EScience, 2022, 2, 623-631.	41.6	23
66	Roleâ€Specialized Division of Labor in CO ₂ Reduction with Doublyâ€Functionalized Iron Porphyrin Atropisomers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
67	Efficient Activation of the Greenhouse Gas CO ₂ . Angewandte Chemie - International Edition, 2011, 50, 4262-4264.	13.8	22
68	Modulating Sonogashira Cross-Coupling Reactivity in Four-Coordinate Nickel Complexes by Using Geometric Control. European Journal of Inorganic Chemistry, 2015, 2015, 2139-2144.	2.0	22
69	Redox Induced Configurational Isomerization of Bisphosphine–Tricarbonyliron(I) Complexes and the Difference a Ferrocene Makes. Inorganic Chemistry, 2017, 56, 7501-7511.	4.0	22
70	Assessing the Influence of Supercritical Carbon Dioxide on the Electrochemical Reduction to Formic Acid Using Carbon-Supported Copper Catalysts. ACS Catalysis, 2020, 10, 12783-12789.	11.2	22
71	Influence of the Introduction of Cyanido and Phosphane Ligands in Multifunctionalized (Mercaptomethyl)silane [FeFe] Hydrogenase Model Systems. European Journal of Inorganic Chemistry, 2011, 2011, 581-588.	2.0	21
72	Versatile Reactivity of a Solvent-Coordinated Diiron(II) Compound: Synthesis and Dioxygen Reactivity of a Mixed-Valent Fe ^{II} Fe ^{III} Species. Inorganic Chemistry, 2014, 53, 167-181.	4.0	21

#	Article	IF	CITATIONS
73	Bimetallic nickel complexes for selective CO ₂ carbon capture and sequestration. Dalton Transactions, 2016, 45, 904-907.	3.3	21
74	Enhancing the CO ₂ Electroreduction of Fe/Niâ€Pentlandite Catalysts by S/Se Exchange. Chemistry - A European Journal, 2020, 26, 9938-9944.	3.3	21
75	Magnetic NiFe ₂ O ₄ Nanoparticles Prepared via Nonâ€Aqueous Microwaveâ€Assisted Synthesis for Application in Electrocatalytic Water Oxidation. Chemistry - A European Journal, 2021, 27, 16990-17001.	3.3	21
76	Controlled Flexible Coordination in Tripodal Iron(II) Phosphane Complexes: Effects on Reactivity. Inorganic Chemistry, 2016, 55, 1183-1191.	4.0	19
77	Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by ⁵⁷ Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Inorganic Chemistry, 2019, 58, 4000-4013.	4.0	19
78	Investigation of amino acid containing [FeFe] hydrogenase models concerning pendant base effects. Journal of Inorganic Biochemistry, 2009, 103, 1236-1244.	3.5	18
79	A dinuclear porphyrin-macrocycle as efficient catalyst for the hydrogen evolution reaction. Chemical Communications, 2020, 56, 14179-14182.	4.1	18
80	Reactions of 7,8â€Dithiabicyclo[4.2.1]nonaâ€2,4â€diene 7â€ <i>exo</i> â€Oxide with Dodecacarbonyl Triiron Fe ₃ (CO) ₁₂ : A Novel Type of Sulfenato Thiolato Diiron Hexacarbonyl Complexes. Chemistry - an Asian Journal, 2010, 5, 1600-1610.	3.3	17
81	Solvent-Controlled CO ₂ Reduction by a Triphos–Iron Hydride Complex. Organometallics, 2019, 38, 289-299.	2.3	17
82	Hidden parameters for electrochemical carbon dioxide reduction in zero-gap electrolyzers. Cell Reports Physical Science, 2022, 3, 100825.	5.6	17
83	New Approach to [FeFe]â€Hydrogenase Models Using Aromatic Thioketones. European Journal of Inorganic Chemistry, 2012, 2012, 318-326.	2.0	16
84	Organometallic Fe–Fe Interactions: Beyond Common Metal–Metal Bonds and Inverse Mixedâ€Valent Charge Transfer. Chemistry - A European Journal, 2017, 23, 1770-1774.	3.3	16
85	Spontaneous Si–C bond cleavage in (Triphos ^{Si})-nickel complexes. Dalton Transactions, 2017, 46, 907-917.	3.3	16
86	{1,1′â€(Dimethylsilylene)bis[methanechalcogenolato]}diiron Complexes [2Fe2E(Si)] (E=S, Se, Te) – [FeFe] Hydrogenase Models. Helvetica Chimica Acta, 2012, 95, 2168-2175.	1.6	15
87	[FeFe]â€Hydrogenase with Chalcogenide Substitutions at the Hâ€Cluster Maintains Full H ₂ Evolution Activity. Angewandte Chemie, 2016, 128, 8536-8540.	2.0	15
88	Monodispersed Mesoporous Silica Spheres Supported Co ₃ O ₄ as Robust Catalyst for Oxygen Evolution Reaction. ChemCatChem, 2017, 9, 4238-4243.	3.7	15
89	Sulfur substitution in a Ni(cyclam) derivative results in lower overpotential for CO2 reduction and enhanced proton reduction. Dalton Transactions, 2019, 48, 5923-5932.	3.3	15
90	Mesoporous NiFe ₂ O ₄ with Tunable Pore Morphology for Electrocatalytic Water Oxidation. ChemElectroChem, 2021, 8, 227-239.	3.4	15

#	Article	IF	CITATIONS
91	Reaction of Fe3(CO)12 with octreotide—chemical, electrochemical and biological investigations. Dalton Transactions, 2010, 39, 3065.	3.3	14
92	Hydroxy and ether functionalized dithiolanes: Models for the active site of the [FeFe] hydrogenase. Journal of Organometallic Chemistry, 2011, 696, 1084-1088.	1.8	14
93	[FeFe]-Hydrogenase models assembled into vesicular structures. Journal of Liposome Research, 2014, 24, 59-68.	3.3	14
94	Phosphine-ligated dinitrosyl iron complexes for redox-controlled NO release. Dalton Transactions, 2016, 45, 10271-10279.	3.3	13
95	Electrochemical CO ₂ Reduction — The Effect of Chalcogenide Exchange in Ni-Isocyclam Complexes. Organometallics, 2020, 39, 1497-1510.	2.3	13
96	Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Dalton Transactions, 2021, 50, 3641-3650.	3.3	13
97	A bioinspired redox-modulating copper(<scp>ii</scp>)–macrocyclic complex bearing non-steroidal anti-inflammatory drugs with anti-cancer stem cell activity. Dalton Transactions, 2022, 51, 5904-5912.	3.3	12
98	Fe _x Ni _{9â^'x} S ₈ (<i>x</i> = 3–6) as potential photocatalysts for solar-driven hydrogen production?. Faraday Discussions, 2019, 215, 216-226.	3.2	11
99	A bioinspired oxoiron(<scp>iv</scp>) motif supported on a N ₂ S ₂ macrocyclic ligand. Chemical Communications, 2021, 57, 2947-2950.	4.1	11
100	Modulation of the CO ₂ fixation in dinickel azacryptands. Dalton Transactions, 2017, 46, 5680-5688.	3.3	10
101	Die lokale Oberflähenstruktur und â€zusammensetzung bestimmt die Wasserstoffentwicklung an Eisenâ€Nickelsulfiden. Angewandte Chemie, 2018, 130, 4157-4161.	2.0	10
102	Synthetic and Electrochemical Studies of [2Fe2S] Complexes Containing a 4â€Aminoâ€1,2â€dithiolaneâ€4â€carboxylic Acid Moiety. European Journal of Inorganic Chemistry, 2010, 2010, 5079-5086.	2.0	9
103	Spectroscopical Investigations on the Redox Chemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide. Molecules, 2018, 23, 1669.	3.8	9
104	Interplay of Spin Crossover and Coordination-Induced Spin State Switch for Iron Bis(pyrazolyl)methanes in Solution. Inorganic Chemistry, 2020, 59, 15343-15354.	4.0	9
105	Electrochemical CO 2 and Proton Reduction by a Co(dithiacyclam) Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 746-753.	1.2	9
106	Metalâ€Corroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie, 2022, 134, .	2.0	9
107	Trimetallic Pentlandites (Fe,Co,Ni) ₉ S ₈ for the Electrocatalytical HER in Acidic Media. ACS Materials Au, 2022, 2, 474-481.	6.0	9
108	Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry. Dalton Transactions, 2017, 46, 12544-12557.	3.3	8

#	Article	IF	CITATIONS
109	Enantioselective Epoxidation by Flavoprotein Monooxygenases Supported by Organic Solvents. Catalysts, 2020, 10, 568.	3.5	8
110	Promising Membrane for Polymer Electrolyte Fuel Cells Shows Remarkable Proton Conduction over Wide Temperature and Humidity Ranges. ACS Applied Polymer Materials, 2021, 3, 4275-4286.	4.4	8
111	A C2-symmetric, basic Fe(iii) carboxylate complex derived from a novel triptycene-based chelating carboxylate ligand. Dalton Transactions, 2012, 41, 9272.	3.3	7
112	Towards Iron-Catalyzed Sonogashira Cross-Coupling Reactions. ChemistrySelect, 2016, 1, 2717-2721.	1.5	7
113	Protonengekoppelte Reduktion des katalytischen [4Feâ€4S]â€Zentrums in [FeFe]â€Hydrogenasen. Angewandte Chemie, 2017, 129, 16728-16732.	2.0	7
114	A dithiacyclam-coordinated silver(<scp>i</scp>) polymer with anti-cancer stem cell activity. Dalton Transactions, 2021, 50, 5779-5783.	3.3	7
115	New Phosphorous-Based [FeFe]-Hydrogenase Models. Catalysts, 2020, 10, 522.	3.5	6
116	Investigation of Cyclam Based Re omplexes as Potential Electrocatalysts for the CO ₂ Reduction Reaction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 968-977.	1.2	6
117	Tuning the Electronic Properties of Homoleptic Silver(I) bis-BIAN Complexes towards Efficient Electrocatalytic CO2 Reduction. Catalysts, 2022, 12, 545.	3.5	6
118	Carbon/Silicon Exchange at the Apex of Diphos―and Triphosâ€Derived Ligands – More Than Just a Substitute?. European Journal of Inorganic Chemistry, 2017, 2017, 3295-3301.	2.0	5
119	Insights from 125Te and 57Fe nuclear resonance vibrational spectroscopy: a [4Fe–4Te] cluster from two points of view. Chemical Science, 2019, 10, 7535-7541.	7.4	5
120	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	3.2	5
121	[NiFe]-(Oxy)Sulfides Derived from NiFe2O4 for the Alkaline Hydrogen Evolution Reaction. Energies, 2022, 15, 543.	3.1	5
122	Trapping an Oxidized and Protonated Intermediate of the [FeFe]-Hydrogenase Cofactor under Mildly Reducing Conditions. Inorganic Chemistry, 2022, 61, 10036-10042.	4.0	5
123	Triptycene-Based, Carboxylate-Bridged Biomimetic Diiron(II) Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 2011-2019.	2.0	4
124	Catalytically Active Iron(IV)oxo Species Based on a Bis(pyridinyl)phenanthrolinylmethane. Israel Journal of Chemistry, 2020, 60, 987-998.	2.3	4
125	Biomimetic Assembly of the [FeFe] Hydrogenase: Synthetic Mimics in a Biological Shell. ChemBioChem, 2013, 14, 2237-2238.	2.6	3
126	Spectroscopic and reactivity differences in metal complexes derived from sulfur containing Triphos homologs. Dalton Transactions, 2017, 46, 13251-13262.	3.3	3

#	Article	IF	CITATIONS
127	Simple Methods for the Preparation of Non-noble Metal Bulk-electrodes for Electrocatalytic Applications. Journal of Visualized Experiments, 2017, , .	0.3	3
128	Plasmachemical Traceâ€Oxygen Removal in a Coke Oven Gas with a Coaxial Packedâ€Bedâ€DBD Reactor. Chemie-Ingenieur-Technik, 2020, 92, 1559-1566.	0.8	2
129	An asymmetric cryptand for the site-specific coordination of 3d metals in multiple oxidation states. Dalton Transactions, 2021, 50, 14602-14610.	3.3	2
130	Effiziente Aktivierung des Treibhausgases CO2. Angewandte Chemie, 2011, 123, 4350-4352.	2.0	1
131	Frontispiz: Electrocatalytic Reduction of CO ₂ to Acetic Acid by a Molecular Manganese Corrole Complex. Angewandte Chemie, 2020, 132, .	2.0	1
132	Toward electrocatalytic chemoenzymatic hydrogen evolution and beyond. Cell Reports Physical Science, 2021, 2, 100626.	5.6	1
133	Roleâ€Specialized Division of Labor in CO2ÂReduction with Doublyâ€Functionalized Iron Porphyrin Atropisomers. Angewandte Chemie, 0, , .	2.0	1
134	Koordinationschemie und Bioanorganik. Nachrichten Aus Der Chemie, 2016, 64, 232-245.	0.0	0
135	Anorganische Chemie 2016: Koordinationschemie und Bioanorganik. Nachrichten Aus Der Chemie, 2017, 65, 245-254.	0.0	0
136	Frontispiece: From Enzymes to Functional Materials—Towards Activation of Small Molecules. Chemistry - A European Journal, 2018, 24, .	3.3	0
137	Bioinspired reactivity and coordination chemistry. Dalton Transactions, 2019, 48, 5859-5860.	3.3	0
138	Frontispiece: Electrocatalytic Reduction of CO ₂ to Acetic Acid by a Molecular Manganese Corrole Complex. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
139	(Invited) From Manipulated Enzymes to Solid State Electrodes –Towards the Reduction of Protons and CO2. ECS Meeting Abstracts, 2019, , .	0.0	0