Goki Eda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3149914/publications.pdf

Version: 2024-02-01

143 46,066 papers citations

14655 66 h-index 9861 141 g-index

147 all docs 147 docs citations 147 times ranked 46324 citing authors

#	Article	IF	CITATIONS
1	Tuning photoresponse of graphene-black phosphorus heterostructure by electrostatic gating and photo-induced doping. Chinese Chemical Letters, 2022, 33, 368-373.	9.0	5
2	Data-driven discovery of high performance layered van der Waals piezoelectric NbOI2. Nature Communications, 2022, 13, 1884.	12.8	22
3	Inâ€Plane Fieldâ€Driven Excitonic Electroâ€Optic Modulation in Monolayer Semiconductor. Advanced Optical Materials, 2022, 10, .	7.3	4
4	Dynamic Tuning of Moiré Superlattice Morphology by Laser Modification. ACS Nano, 2022, 16, 8172-8180.	14.6	3
5	Phase Matching via Plasmonic Modal Dispersion for Third Harmonic Generation. Advanced Science, 2022, 9, .	11.2	2
6	Giant second-harmonic generation in ferroelectric NbOI2. Nature Photonics, 2022, 16, 644-650.	31.4	57
7	Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nature Electronics, 2022, 5, 489-496.	26.0	52
8	Substitutional doping in 2D transition metal dichalcogenides. Nano Research, 2021, 14, 1668-1681.	10.4	92
9	Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TalrTe4. Nature Nanotechnology, 2021, 16, 421-425.	31.5	91
10	Hexagonal Boron Nitride Crystal Growth from Iron, a Single Component Flux. ACS Nano, 2021, 15, 7032-7039.	14.6	26
11	Impurity-Induced Emission in Re-Doped WS ₂ Monolayers. Nano Letters, 2021, 21, 5293-5300.	9.1	21
12	Observation of the Outâ€ofâ€Plane Polarized Spin Current from CVD Grown WTe ₂ . Advanced Quantum Technologies, 2021, 4, 2100038.	3.9	23
13	In-Plane Anisotropic Nonlinear Optical Properties of Two-Dimensional Organic–Inorganic Hybrid Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 7010-7018.	4.6	14
14	Excitonic Energy Transfer in Heterostructures of Quasi-2D Perovskite and Monolayer WS ₂ . ACS Nano, 2020, 14, 11482-11489.	14.6	31
15	Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface. Nature Communications, 2020, 11, 5483.	12.8	35
16	Optoelectronic Properties of a van der Waals WS ₂ Monolayer/2D Perovskite Vertical Heterostructure. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45235-45242.	8.0	49
17	Synthesis of Twoâ€Dimensional Perovskite by Inverse Temperature Crystallization and Studies of Exciton States by Twoâ€Photon Excitation Spectroscopy. Advanced Functional Materials, 2020, 30, 2002661.	14.9	15
18	Hexagonal Boron Nitride Single Crystal Growth from Solution with a Temperature Gradient. Chemistry of Materials, 2020, 32, 5066-5072.	6.7	21

#	Article	IF	CITATIONS
19	Electroâ€Optic Upconversion in van der Waals Heterostructures via Nonequilibrium Photocarrier Tunneling. Advanced Materials, 2020, 32, e2001543.	21.0	14
20	Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nature Electronics, 2020, 3, 460-465.	26.0	145
21	Domain Engineering in ReS ₂ by Coupling Strain during Electrochemical Exfoliation. Advanced Functional Materials, 2020, 30, 2003057.	14.9	22
22	Measuring Valley Polarization in Two-Dimensional Materials with Second-Harmonic Spectroscopy. ACS Photonics, 2020, 7, 925-931.	6.6	22
23	Polarized Lightâ€Emitting Diodes Based on Anisotropic Excitons in Fewâ€Layer ReS ₂ . Advanced Materials, 2020, 32, e2001890.	21.0	49
24	Harnessing Exciton–Exciton Annihilation in Two-Dimensional Semiconductors. Nano Letters, 2020, 20, 1647-1653.	9.1	18
25	Disorder-driven two-dimensional quantum phase transitions in Li <i> _x </i> MoS ₂ . 2D Materials, 2020, 7, 035013.	4.4	7
26	All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nature Nanotechnology, 2019, 14, 945-949.	31.5	177
27	Exciton Polarization and Renormalization Effect for Optical Modulation in Monolayer Semiconductors. ACS Nano, 2019, 13, 9218-9226.	14.6	9
28	Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chemical Society Reviews, 2019, 48, 4639-4654.	38.1	108
29	Highly Stable Twoâ€Dimensional Tin(II) lodide Hybrid Organic–Inorganic Perovskite Based on Stilbene Derivative. Advanced Functional Materials, 2019, 29, 1904810.	14.9	55
30	Sub-Picosecond Carrier Dynamics Induced by Efficient Charge Transfer in MoTe ₂ /WTe ₂ van der Waals Heterostructures. ACS Nano, 2019, 13, 9587-9594.	14.6	22
31	Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. Science Advances, 2019, 5, eaaw2347.	10.3	80
32	Anomalous Broadband Spectrum Photodetection in 2D Rhenium Disulfide Transistor. Advanced Optical Materials, 2019, 7, 1901115.	7.3	37
33	Growth of Nb-Doped Monolayer WS ₂ by Liquid-Phase Precursor Mixing. ACS Nano, 2019, 13, 10768-10775.	14.6	102
34	Polarity Tunable Trionic Electroluminescence in Monolayer WSe ₂ . Nano Letters, 2019, 19, 7470-7475.	9.1	20
35	Phase coherent transport in bilayer and trilayer MoS2. Physical Review B, 2019, 100, .	3.2	2
36	High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors. Nano Letters, 2019, 19, 5595-5603.	9.1	41

#	Article	IF	Citations
37	Controlled Aqueous Synthesis of 2D Hybrid Perovskites with Bright Room-Temperature Long-Lived Luminescence. Journal of Physical Chemistry Letters, 2019, 10, 2869-2873.	4.6	34
38	Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nature Communications, 2019, 10, 1290.	12.8	38
39	Effects Of Structural Phase Transition On Thermoelectric Performance in Lithium-Intercalated Molybdenum Disulfide (Li _{<i>x</i>} MoS ₂). ACS Applied Materials & amp; Interfaces, 2019, 11, 12184-12189.	8.0	31
40	Modulating Charge Density Wave Order in a 1T-TaS ₂ /Black Phosphorus Heterostructure. Nano Letters, 2019, 19, 2840-2849.	9.1	17
41	Elastomeric Waveguide on-Chip Coupling of an Encapsulated MoS2 Monolayer. ACS Photonics, 2019, 6, 595-599.	6.6	11
42	Suppressed Out-of-Plane Polarizability of Free Excitons in Monolayer WSe ₂ . ACS Nano, 2019, 13, 3218-3224.	14.6	21
43	Coupling 2D Materials to an Elastomer Waveguide. , 2019, , .		0
44	TMDâ€Based Phototransistors: Anomalous Broadband Spectrum Photodetection in 2D Rhenium Disulfide Transistor (Advanced Optical Materials 23/2019). Advanced Optical Materials, 2019, 7, 1970088.	7.3	0
45	Layered Hybrid Perovskites for Highly Efficient Threeâ€Photon Absorbers: Theory and Experimental Observation. Advanced Science, 2019, 6, 1801626.	11.2	15
46	Crested two-dimensional transistors. Nature Nanotechnology, 2019, 14, 223-226.	31.5	129
47	Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nature Materials, 2018, 17, 535-542.	27.5	286
48	Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nature Communications, 2018, 9, 199.	12.8	128
49	Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. ACS Nano, 2018, 12, 1859-1867.	14.6	97
50	Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration. Nano Research, 2018, 11, 4574-4586.	10.4	30
51	Excitonic Properties of Chemically Synthesized 2D Organic–Inorganic Hybrid Perovskite Nanosheets. Advanced Materials, 2018, 30, e1704055.	21.0	92
52	Revealing the Atomic Defects of WS ₂ Governing Its Distinct Optical Emissions. Advanced Functional Materials, 2018, 28, 1704210.	14.9	69
53	Photoluminescence Upconversion by Defects in Hexagonal Boron Nitride. Nano Letters, 2018, 18, 6898-6905.	9.1	76
54	Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nature Materials, 2018, 17, 908-914.	27.5	295

#	Article	IF	CITATIONS
55	Evidence for line width and carrier screening effects on excitonic valley relaxation in 2D semiconductors. Nature Communications, 2018, 9, 2598.	12.8	52
56	Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide. Scientific Reports, 2018, 8, 10035.	3.3	57
57	Interlayer screening effects in WS ₂ /WSe ₂ van der Waals hetero-bilayer. 2D Materials, 2018, 5, 041003.	4.4	18
58	Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides. Advanced Materials, 2018, 30, e1802687.	21.0	86
59	Microstructure and Elastic Constants of Transition Metal Dichalcogenide Monolayers from Friction and Shear Force Microscopy. Advanced Materials, 2018, 30, e1803748.	21.0	16
60	Significantly enhanced optoelectronic performance of tungsten diselenide phototransistor via surface functionalization. Nano Research, 2017, 10, 1282-1291.	10.4	30
61	Chemical Stabilization of 1T′ Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity. Journal of the American Chemical Society, 2017, 139, 2504-2511.	13.7	171
62	Nonlinear optical properties of a one-dimensional coordination polymer. Journal of Materials Chemistry C, 2017, 5, 2936-2941.	5. 5	46
63	Determination of Crystal Axes in Semimetallic T′â€MoTe ₂ by Polarized Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1604799.	14.9	47
64	Thermal dissociation of inter-layer excitons in MoS ₂ /MoSe ₂ hetero-bilayers. Nanoscale, 2017, 9, 6674-6679.	5.6	64
65	Two-step fabrication of single-layer rectangular SnSe flakes. 2D Materials, 2017, 4, 021026.	4.4	57
66	Chalcogenide Nanosheets: Optical Signatures of Many-Body Effects and Electronic Band Structure. Nanostructure Science and Technology, 2017, , 133-162.	0.1	2
67	Ultrafast charge transfer dynamics pathways in two-dimensional MoS ₂ –graphene heterostructures: a core-hole clock approach. Physical Chemistry Chemical Physics, 2017, 19, 29954-29962.	2.8	31
68	Efficient Carrier-to-Exciton Conversion in Field Emission Tunnel Diodes Based on MIS-Type van der Waals Heterostack. Nano Letters, 2017, 17, 5156-5162.	9.1	71
69	Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nature Communications, 2017, 8, 15714.	12.8	120
70	Valenceâ€band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2380-2386.	1.8	13
71	Enhancing charge-density-wave order in 1T-TiSe2 nanosheet by encapsulation with hexagonal boron nitride. Applied Physics Letters, 2016, 109, 141902.	3.3	19
72	Discovery of a new type of topological Weyl fermion semimetal state in MoxW1â^'xTe2. Nature Communications, 2016, 7, 13643.	12.8	163

#	Article	IF	Citations
73	Feature issue introduction: two-dimensional materials for photonics and optoelectronics. Optical Materials Express, 2016, 6, 2458.	3.0	1
74	Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nature Communications, 2016, 7, 11283.	12.8	244
75	Exciton–Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles. Advanced Materials, 2016, 28, 2709-2715.	21.0	115
76	Engineering Bandgaps of Monolayer MoS ₂ and WS ₂ on Fluoropolymer Substrates by Electrostatically Tuned Manyâ€Body Effects. Advanced Materials, 2016, 28, 6457-6464.	21.0	116
77	Evidence for Fast Interlayer Energy Transfer in MoSe ₂ /WS ₂ Heterostructures. Nano Letters, 2016, 16, 4087-4093.	9.1	205
78	Effect of oxygen and ozone on p-type doping of ultra-thin WSe ₂ and MoSe ₂ field effect transistors. Physical Chemistry Chemical Physics, 2016, 18, 4304-4309.	2.8	68
79	Stable Monolayer Transition Metal Dichalcogenide Ordered Alloys with Tunable Electronic Properties. Journal of Physical Chemistry C, 2016, 120, 2501-2508.	3.1	51
80	Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides. ACS Nano, 2016, 10, 2476-2484.	14.6	87
81	Dynamic Structural Evolution of Metal–Metal Bonding Network in Monolayer WS ₂ . Chemistry of Materials, 2016, 28, 2308-2314.	6.7	37
82	Controlling many-body states by the electric-field effect in a two-dimensional material. Nature, 2016, 529, 185-189.	27.8	385
83	Luminescent Properties of a Waterâ€Soluble Conjugated Polymer Incorporating Grapheneâ€Oxide Quantum Dots. ChemPhysChem, 2015, 16, 1258-1262.	2.1	20
84	Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chemical Society Reviews, 2015, 44, 7715-7736.	38.1	353
85	Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 8070-8077.	14.6	204
86	Complex electrical permittivity of the monolayer molybdenum disulfide (MoS_2) in near UV and visible. Optical Materials Express, 2015, 5, 447.	3.0	104
87	Quantum Transport Detected by Strong Proximity Interaction at a Graphene–WS2 van der Waals Interface. Nano Letters, 2015, 15, 5682-5688.	9.1	18
88	Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today, 2015, 1, 60-66.	4.3	372
89	Strong Optical Absorption and Photocarrier Relaxation in 2-D Semiconductors. IEEE Journal of Quantum Electronics, 2015, 51, 1-6.	1.9	21
90	Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Accounts of Chemical Research, 2015, 48, 91-99.	15.6	149

#	Article	IF	Citations
91	van der Waals Force: A Dominant Factor for Reactivity of Graphene. Nano Letters, 2015, 15, 319-325.	9.1	65
92	Wet chemical thinning of molybdenum disulfide down to its monolayer. APL Materials, 2014, 2, .	5.1	31
93	Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals. Nano Letters, 2014, 14, 3270-3276.	9.1	433
94	Electronic transport in graphene-based heterostructures. Applied Physics Letters, 2014, 104, .	3.3	61
95	Macroporous polymer nanocomposites synthesised from high internal phase emulsion templates stabilised by reduced graphene oxide. Polymer, 2014, 55, 395-402.	3.8	39
96	Charge Transport and Exciton Dynamics in 2D Semiconductors. , 2014, , .		0
97	Nonlinear photoluminescence in atomically thin layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2<td>:m8.2<td>กl:മങub></td></td></mml:mn></mml:msub></mml:math>	:m 8.2 <td>กl:മങub></td>	ก l:മങ ub>
98	Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nature Communications, 2014, 5, 4543.	12.8	372
99	Large Thermoelectricity via Variable Range Hopping in Chemical Vapor Deposition Grown Single-Layer MoS ₂ . Nano Letters, 2014, 14, 2730-2734.	9.1	210
100	Transport Properties of Monolayer MoS ₂ Grown by Chemical Vapor Deposition. Nano Letters, 2014, 14, 1909-1913.	9.1	431
101	Charge transport in ion-gated mono-, bi- and trilayer MoS2 field effect transistors. Scientific Reports, 2014, 4, 7293.	3.3	64
102	Photoelectrochemical properties of chemically exfoliated MoS2. Journal of Materials Chemistry A, 2013, 1, 8935.	10.3	137
103	Origin of Indirect Optical Transitions in Few-Layer MoS ₂ , WS ₂ , and WSe ₂ . Nano Letters, 2013, 13, 5627-5634.	9.1	435
104	Conducting MoS ₂ Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters, 2013, 13, 6222-6227.	9.1	1,948
105	Observation of wrinkle induced potential drops in biased chemically derived graphene thin film networks. Carbon, 2013, 64, 35-44.	10.3	11
106	Graphene oxide gate dielectric for graphene-based monolithic field effect transistors. Applied Physics Letters, 2013, 102, .	3.3	43
107	Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale, 2013, 5, 9677.	5.6	724
108	Evolution of Electronic Structure in Atomically Thin Sheets of WS ₂ and WSe ₂ . ACS Nano, 2013, 7, 791-797.	14.6	1,690

#	Article	IF	CITATIONS
109	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5, 263-275.	13.6	8,051
110	An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Research, 2013, 6, 200-207.	10.4	140
111	Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12, 850-855.	27.5	2,326
112	Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano, 2013, 7, 5660-5665.	14.6	398
113	Free-standing graphene on microstructured silicon vertices for enhanced field emission properties. Nanoscale, 2012, 4, 3069.	5 . 6	58
114	Coherent Atomic and Electronic Heterostructures of Single-Layer MoS ₂ . ACS Nano, 2012, 6, 7311-7317.	14.6	806
115	Tunable Photoluminescence from Graphene Oxide. Angewandte Chemie - International Edition, 2012, 51, 6662-6666.	13.8	584
116	Graphene Patchwork. ACS Nano, 2011, 5, 4265-4268.	14.6	28
117	Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chemical Communications, 2011, 47, 6084.	4.1	82
118	Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. ACS Nano, 2011, 5, 4945-4952.	14.6	139
119	Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21, 11217.	6.7	76
120	Photoluminescence from Chemically Exfoliated MoS ₂ . Nano Letters, 2011, 11, 5111-5116.	9.1	3,402
121	Reduced Graphene Oxide Electrodes for Large Area Organic Electronics. Advanced Materials, 2011, 23, 1558-1562.	21.0	92
122	Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials, 2010, 22, 505-509.	21.0	1,824
123	Chemically Derived Graphene Oxide: Towards Largeâ€Area Thinâ€Film Electronics and Optoelectronics. Advanced Materials, 2010, 22, 2392-2415.	21.0	2,018
124	Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2, 1015-1024.	13.6	2,966
125	In-Situ Raman Spectroscopy of Graphene Defects in Reducing Atmospheres at High Temperature. , 2010, ,		0
126	Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices. ACS Nano, 2010, 4, 637-642.	14.6	266

#	Article	IF	Citations
127	Highly Uniform 300 mm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films. ACS Nano, 2010, 4, 524-528.	14.6	209
128	Direct white light emission from inorganic–organic hybrid semiconductor bulk materials. Journal of Materials Chemistry, 2010, 20, 10676.	6.7	58
129	Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials, 2009, 19, 2577-2583.	14.9	1,603
130	Atomic and Electronic Structure of Graphene-Oxide. Nano Letters, 2009, 9, 1058-1063.	9.1	1,043
131	Graphene-based Composite Thin Films for Electronics. Nano Letters, 2009, 9, 814-818.	9.1	639
132	Zinc oxide nanowire networks for macroelectronic devices. Applied Physics Letters, 2009, 94, .	3.3	49
133	Insulator to Semimetal Transition in Graphene Oxide. Journal of Physical Chemistry C, 2009, 113, 15768-15771.	3.1	577
134	Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 2008, 3, 270-274.	31.5	4,057
135	Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters, 2008, 92, .	3.3	368
136	Field emission from graphene based composite thin films. Applied Physics Letters, 2008, 93, .	3.3	258
137	Bundling dynamics of single walled carbon nanotubes in aqueous suspensions. Journal of Applied Physics, 2008, 103, 093118.	2.5	9
138	Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Applied Physics Letters, 2007, 90, 121913.	3.3	219
139	Bead-to-fiber transition in electrospun polystyrene. Journal of Applied Polymer Science, 2007, 106, 475-487.	2.6	110
140	Solvent effects on jet evolution during electrospinning of semi-dilute polystyrene solutions. European Polymer Journal, 2007, 43, 1154-1167.	5.4	57
141	Flight path of electrospun polystyrene solutions: Effects of molecular weight and concentration. Materials Letters, 2007, 61, 1451-1455.	2.6	34
142	Bead structure variations during electrospinning of polystyrene. Journal of Materials Science, 2006, 41, 5704-5708.	3.7	51
143	Modeâ€Center Placement of Monolayer WS 2 in a Photonic Polymer Waveguide. Advanced Optical Materials, 0, , 2101684.	7.3	3