Sihui Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3149813/publications.pdf

Version: 2024-02-01

		126907	95266
83	4,866 citations	33	68
papers	citations	h-index	g-index
83	83	83	5018
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Enhanced redox activity and oxygen vacancies of perovskite triggered by copper incorporation for the improvement of electro-Fenton activity. Chemical Engineering Journal, 2022, 428, 131352.	12.7	34
2	Enhanced electron transfer and hydrogen peroxide activation capacity with N, P-codoped carbon encapsulated CeO2 in heterogeneous electro-Fenton process. Chemosphere, 2022, 287, 132154.	8.2	18
3	Reinforced upconversion and charge separation via mid-gap states in WO3 nanosheet with infrared light driven tetracycline degradation. Chemical Engineering Journal, 2022, 431, 134134.	12.7	12
4	Facilitating Redox Cycles of Copper Species by Pollutants in Peroxymonosulfate Activation. Environmental Science & Environment	10.0	67
5	Enhanced carriers separation in novel in-plane amorphous carbon/g-C3N4 nanosheets for photocatalytic environment remediation. Chemosphere, 2022, 294, 133581.	8.2	8
6	High-efficiency photocatalytic degradation of rhodamine 6G by organic semiconductor tetrathiafulvalene in weak acid–base environment. Chemical Communications, 2022, 58, 4251-4254.	4.1	9
7	Enhanced localized dipole of Pt-Au single-site catalyst for solar water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
8	Towards singleâ€atom photocatalysts for future carbonâ€neutral application. SmartMat, 2022, 3, 417-446.	10.7	35
9	In-situ-formed red phosphorus nanosheet on bulk red phosphorus for boosting charge separation in photocatalysis:The role of multiple interfacial effects. Applied Catalysis B: Environmental, 2022, 312, 121373.	20.2	9
10	Identification of the Stable Pt Single Sites in the Environment of lons: From Mechanism to Design Principle. Advanced Materials, 2022, 34, e2108504.	21.0	6
11	Mechanistic insight into the dynamic transformation of acid sites on ceria supported molybdenum oxide catalyst for NOx reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108114.	6.7	8
12	Almost 100 % Peroxymonosulfate Conversion to Singlet Oxygen on Singleâ€Atom CoN ₂₊₂ Sites. Angewandte Chemie, 2021, 133, 4638-4643.	2.0	224
13	Almost 100 % Peroxymonosulfate Conversion to Singlet Oxygen on Singleâ€Atom CoN ₂₊₂ Sites. Angewandte Chemie - International Edition, 2021, 60, 4588-4593.	13.8	337
14	Conjugated π Electrons of MOFs Drive Charge Separation at Heterostructures Interface for Enhanced Photoelectrochemical Water Oxidation. Small, 2021, 17, e2100367.	10.0	33
15	Cobalt diselenide (001) surface with short-range Co-Co interaction triggering high-performance electrocatalytic oxygen evolution. Nano Research, 2021, 14, 4848-4856.	10.4	17
16	Photo-electro-Fenton-like process for rapid ciprofloxacin removal: The indispensable role of polyvalent manganese in Fe-free system. Science of the Total Environment, 2021, 768, 144368.	8.0	30
17	Ultra-Thin Red Phosphor Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution Under Visible Light. Topics in Catalysis, 2021, 64, 559-566.	2.8	3
18	Cationâ^Ï€ structure inducing efficient peroxymonosulfate activation for pollutant degradation over atomically dispersed cobalt bonding graphene-like nanospheres. Applied Catalysis B: Environmental, 2021, 286, 119912.	20.2	71

#	Article	IF	CITATIONS
19	Efficient photocatalytic oxygen activation by oxygen-vacancy-rich CeO2-based heterojunctions: Synergistic effect of photoexcited electrons transfer and oxygen chemisorption. Applied Catalysis B: Environmental, 2021, 289, 120020.	20.2	102
20	Pt–Cu Interaction Induced Construction of Single Pt Sites for Synchronous Electron Capture and Transfer in Photocatalysis. Advanced Functional Materials, 2021, 31, 2104343.	14.9	50
21	Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photoâ€Fenton Process. Angewandte Chemie - International Edition, 2021, 60, 21261-21266.	13.8	158
22	Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. Water Research, 2021, 201, 117314.	11.3	99
23	Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photoâ€Fenton Process. Angewandte Chemie, 2021, 133, 21431-21436.	2.0	12
24	Accelerating Fe ^{III} -Aqua Complex Reduction in an Efficient Solid–Liquid-Interfacial Fenton Reaction over the Mn–CNH Co-catalyst at Near-Neutral pH. Environmental Science & Environment	10.0	12
25	Oxygen-vacancy mediated acidity and redox properties on WOx/Cu-doped CeO2 for the removal of NOx. Journal of Environmental Chemical Engineering, 2021, 9, 106024.	6.7	13
26	Tailoring of electronic and surface structures boosts exciton-triggering photocatalysis for singlet oxygen generation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	61
27	Constructing Cu ₂ O/Bi ₂ MoO ₆ pâ€"n heterojunction towards boosted photo-assisted-electro-Fenton-like synergy degradation of ciprofloxacin. Environmental Science: Nano, 2021, 8, 3629-3642.	4.3	8
28	3D Grapheneâ€Based Macrostructures for Water Treatment. Advanced Materials, 2020, 32, e1806843.	21.0	158
29	Unravelling the Synergy between Oxygen Vacancies and Oxygen Substitution in BiO _{2â°'<i>x</i>} for Efficient Molecularâ€Oxygen Activation. Angewandte Chemie, 2020, 132, 3714-3719.	2.0	19
30	Unravelling the Synergy between Oxygen Vacancies and Oxygen Substitution in BiO _{2â°'<i>x</i>} for Efficient Molecularâ€Oxygen Activation. Angewandte Chemie - International Edition, 2020, 59, 3685-3690.	13.8	147
31	Mechanistic insights for efficient inactivation of antibiotic resistance genes: a synergistic interfacial adsorption and photocatalytic-oxidation process. Science Bulletin, 2020, 65, 2107-2119.	9.0	37
32	Efficient removal for multiple pollutants via Ag2O/BiOBr heterojunction: A promoted photocatalytic process by valid electron transfer pathway. Chinese Chemical Letters, 2020, 31, 2698-2704.	9.0	26
33	Efficient Fenton-like Process for Pollutant Removal in Electron-Rich/Poor Reaction Sites Induced by Surface Oxygen Vacancy over Cobalt–Zinc Oxides. Environmental Science &	10.0	137
34	A novel Fe-free photo-electro-Fenton-like system for enhanced ciprofloxacin degradation: bifunctional Z-scheme WO3/g-C3N4. Environmental Science: Nano, 2019, 6, 2850-2862.	4.3	27
35	Highly Efficient Degradation of Polyacrylamide by an Fe-Doped Ce _{0.75} Zr _{0.25} O ₂ Solid Solution/CF Composite Cathode in a Heterogeneous Electro-Fenton Process. ACS Applied Materials & Interfaces, 2019, 11, 30703-30712.	8.0	24
36	Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angewandte Chemie - International Edition, 2019, 58, 13466-13471.	13.8	99

#	Article	IF	Citations
37	Evaluation of ciprofloxacin destruction between ordered mesoporous and bulk NiMn ₂ O ₄ /CF cathode: efficient mineralization in a heterogeneous electro-Fenton-like process. Environmental Science: Nano, 2019, 6, 661-671.	4.3	25
38	Unraveling the Interfacial Charge Migration Pathway at the Atomic Level in a Highly Efficient Zâ€Scheme Photocatalyst. Angewandte Chemie, 2019, 131, 11451-11456.	2.0	22
39	Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy. TrAC - Trends in Analytical Chemistry, 2019, 117, 13-26.	11.4	121
40	Unraveling the Interfacial Charge Migration Pathway at the Atomic Level in a Highly Efficient Zâ€Scheme Photocatalyst. Angewandte Chemie - International Edition, 2019, 58, 11329-11334.	13.8	152
41	The Role of Alkali Metal in αâ€MnO ₂ Catalyzed Ammonia‧elective Catalysis. Angewandte Chemie, 2019, 131, 6417-6422.	2.0	4
42	The Role of Alkali Metal in αâ€MnO ₂ Catalyzed Ammonia‧elective Catalysis. Angewandte Chemie - International Edition, 2019, 58, 6351-6356.	13.8	110
43	Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: Influence factors, reaction mechanism and pathways. Journal of Hazardous Materials, 2019, 367, 365-374.	12.4	69
44	Ordered Mesoporous Ni _{<i>y</i>} MnO _{<i>x</i>} Nanocatalysts for the Low-Temperature Selective Reduction of NO _{<i>x</i>} with NH ₃ . ACS Applied Nano Materials, 2019, 2, 505-516.	5.0	14
45	Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Few‣ayer Cuâ€ZnIn ₂ S ₄ . Advanced Functional Materials, 2019, 29, 1807013.	14.9	165
46	AgBr/g-C ₃ N ₄ nanocomposites for enhanced visible-light-driven photocatalytic inactivation of <i>Escherichia coli</i>). RSC Advances, 2018, 8, 34428-34436.	3.6	15
47	Ce-Directed Double-Layered Nanosheet Architecture of NiFe-Based Hydroxide as Highly Efficient Water Oxidation Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 15411-15418.	6.7	32
48	Novel Flexible Self-Standing Pt/Al ₂ O ₃ Nanofibrous Membranes: Synthesis and Multifunctionality for Environmental Remediation. ACS Applied Materials & Diterfaces, 2018, 10, 26396-26404.	8.0	18
49	The effects of copper oxide nanoparticles on dorsoventral patterning, convergent extension, and neural and cardiac development of zebrafish. Aquatic Toxicology, 2017, 188, 130-137.	4.0	34
50	Efficient water disinfection with Ag 2 WO 4 -doped mesoporous g-C 3 N 4 under visible light. Journal of Hazardous Materials, 2017, 338, 33-46.	12.4	99
51	Modified carbon felt made using Ce _x A _{1â^'x} O ₂ composites as a cathode in electro-Fenton system to degrade ciprofloxacin. RSC Advances, 2017, 7, 27065-27078.	3.6	23
52	Efficient mineralization of ciprofloxacin using a 3D Ce _x Zr _{1â^x} O ₂ /RGO composite cathode. Environmental Science: Nano, 2017, 4, 425-436.	4.3	28
53	Novel hollow microspheres MnxCo3â^'xO4 (x = 1, 2) with remarkable performance for low-temperature selective catalytic reduction of NO with NH3. Journal of Sol-Gel Science and Technology, 2017, 81, 576-585.	2.4	20
54	Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(χ)-CeO2 at low temperatures. Applied Catalysis B: Environmental, 2017, 203, 199-209.	20.2	249

#	Article	IF	Citations
55	Preparation of novel CeMo(x) hollow microspheres for low-temperature SCR removal of NO _x with NH ₃ . RSC Advances, 2016, 6, 59185-59194.	3.6	15
56	Structure–performance relationships of MnO ₂ nanocatalyst for the low-temperature SCR removal of NO _X under ammonia. RSC Advances, 2016, 6, 54926-54937.	3.6	43
57	Low-Temperature Selective Catalytic Reduction of NO with NH ₃ over Mn ₂ O ₃ -Doped Fe ₂ O ₃ Hexagonal Microsheets. ACS Applied Materials & Sub; 100 and	8.0	194
58	Fabrication of TiO ₂ â€"Bi ₂ WO ₆ Binanosheet for Enhanced Solar Photocatalytic Disinfection of <i>E. coli</i> Insights on the Mechanism. ACS Applied Materials & Interfaces, 2016, 8, 6841-6851.	8.0	200
59	Rapid and Efficient Formation of Reverse Vesicle on Carbon Fibers. Journal of Dispersion Science and Technology, 2016, 37, 245-250.	2.4	0
60	Optimal Conditions for Existence of Vesicles Under Electric Field. Journal of Dispersion Science and Technology, 2015, 36, 1564-1568.	2.4	0
61	Highly Efficient Removal of Pathogenic Bacteria with Magnetic Graphene Composite. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4290-4298.	8.0	98
62	Sol-gel preparation of mesoporous cerium-doped FeTi nanocatalysts and its SCR activity of NOx with NH3 at low temperature. Journal of Sol-Gel Science and Technology, 2015, 73, 443-451.	2.4	11
63	Energy-saving removal of methyl orange in high salinity wastewater by electrochemical oxidation via a novel Ti/SnO2-Sb anode—Air diffusion cathode system. Catalysis Today, 2015, 258, 156-161.	4.4	33
64	Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe ₂ O ₄ -GO Nanocomposite. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10576-10586.	8.0	187
65	Highly efficient removal of NO with ordered mesoporous manganese oxide at low temperature. RSC Advances, 2015, 5, 29353-29361.	3.6	62
66	Superior Antibacterial Activity of Fe ₃ O ₄ -TiO ₂ Nanosheets under Solar Light. ACS Applied Materials & Solar Light.	8.0	170
67	Facile preparation of ordered mesoporous MnCo ₂ O ₄ for low-temperature selective catalytic reduction of NO with NH ₃ . Nanoscale, 2015, 7, 2568-2577.	5.6	109
68	Facile preparation of MnO ₂ doped Fe ₂ O ₃ hollow nanofibers for low temperature SCR of NO with NH ₃ . Journal of Materials Chemistry A, 2014, 2, 20486-20493.	10.3	118
69	High Yield of Supergiant Vesicles on Glyoxylic Acid Modified Aluminum Electrode. Journal of Dispersion Science and Technology, 2014, 35, 1169-1173.	2.4	1
70	Electroformed Giant Vesicles from a Binary Mixture of Phospholipids and Quaternary Ammonium Salts. Journal of Dispersion Science and Technology, 2014, 35, 672-676.	2.4	2
71	Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. Journal of Hazardous Materials, 2014, 274, 115-123.	12.4	117
72	Coaxial-Electrospun Magnetic Core–Shell Fe@TiSi Nanofibers for the Rapid Purification of Typical Dye Wastewater. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16841-16850.	8.0	22

#	Article	IF	Citations
73	Removal of PCP-Na from aqueous systems using monodispersed pompon-like magnetic nanoparticles as adsorbents. Water Science and Technology, 2013, 68, 2704-2711.	2.5	O
74	Facile fabrication of cerium niobate nano-crystalline fibers by electrospinning technology. Journal of Sol-Gel Science and Technology, 2011, 58, 394-399.	2.4	8
75	Fast degradation of methylene blue with electrospun hierarchical \hat{l}_{\pm} -Fe2O3 nanostructured fibers. Journal of Sol-Gel Science and Technology, 2011, 58, 716-723.	2.4	32
76	Mesoporous Fe2O3-doped TiO2 nanostructured fibers with higher photocatalytic activity. Journal of Colloid and Interface Science, 2011, 355, 328-333.	9.4	47
77	Core-Shell Nanostructure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>α</mml:mi><mml:mtext>-</mml:mtext> <mm 1-5.<="" 2011,="" and="" for="" journal="" methyl="" nanomaterials,="" of="" orange.="" photocatalysis="" synthesis="" td=""><td>nl:wanp><u< td=""><td>ոտևրոtext>Fe</td></u<></td></mm></mml:math>	nl:w anp > <u< td=""><td>ոտևրոtext>Fe</td></u<>	ոտ ևր ոtext>Fe
78	A Mini Review: Electrospun Hierarchical Nanofibers. Journal of Dispersion Science and Technology, 2010, 31, 760-769.	2.4	10
79	Electrospun Nickel Oxide Hollow Nanostructured Fibers. Journal of Dispersion Science and Technology, 2009, 30, 246-249.	2.4	7
80	Electrochemical Behaviors of C60/TTAL Films in Aqueous Solutions. Journal of Dispersion Science and Technology, 2009, 30, 313-317.	2.4	1
81	Co-Electrospun BaTiO3 Hollow Fibers Combined with Sol-Gel Method. Journal of Dispersion Science and Technology, 2008, 29, 1345-1348.	2.4	11
82	Noncovalent Functionalization of Multiwalled Carbon Nanotubes by Anionic Polymer Poly(Sodium) Tj ETQq0 0	0 rgBT/Ον 2.4	erlock 10 Tf 50
83	LiCoO2Hollow Nanofibers by Coâ€Electrospinning Solâ€Gel Precursor. Journal of Dispersion Science and Technology, 2008, 29, 702-705.	2.4	17