
Shota Miyaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3147540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Auditory changeâ€related cortical response is associated with hypervigilance to pain in healthy volunteers. European Journal of Pain, 2022, 26, 349-355.	2.8	3
2	Sleep affects the motor memory of basketball shooting skills in young amateurs. Journal of Clinical Neuroscience, 2022, 96, 187-193.	1.5	2
3	Effect of brain-derived neurotrophic factor gene polymorphisms on motor performance and motor learning: A systematic review and meta-analysis. Behavioural Brain Research, 2022, 420, 113712.	2.2	2
4	Gamma-transcranial alternating current stimulation on the cerebellum and supplementary motor area improves bimanual motor skill. Behavioural Brain Research, 2022, 424, 113805.	2.2	8
5	Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. Journal of Clinical Neuroscience, 2022, 100, 59-65.	1.5	2
6	Effect of Transcranial Electrical Stimulation over the Posterior Parietal Cortex on Tactile Spatial Discrimination Performance. Neuroscience, 2022, 494, 94-103.	2.3	5
7	Effect of Repetitive Passive Movement Before Motor Skill Training on Corticospinal Excitability and Motor Learning Depend on BDNF Polymorphisms. Frontiers in Human Neuroscience, 2021, 15, 621358.	2.0	4
8	Region-Specific Effects of 10-Hz Transcranial Alternate Current Stimulation Over the Left Posterior Parietal Cortex and Primary Somatosensory Area on Tactile Two-Point Discrimination Threshold. Frontiers in Neuroscience, 2021, 15, 576526.	2.8	3
9	Influence of Brain-Derived Neurotrophic Factor Genotype on Short-Latency Afferent Inhibition and Motor Cortex Metabolites. Brain Sciences, 2021, 11, 395.	2.3	12
10	The intervention of mechanical tactile stimulation modulates somatosensory evoked magnetic fields and cortical oscillations. European Journal of Neuroscience, 2021, 53, 3433-3446.	2.6	2
11	Contribution of the brain-derived neurotrophic factor and neurometabolites to the motor performance. Behavioural Brain Research, 2021, 412, 113433.	2.2	3
12	αâ€ŧACS over the somatosensory cortex enhances tactile spatial discrimination in healthy subjects with low alpha activity. Brain and Behavior, 2021, 11, e02019.	2.2	9
13	The Number or Type of Stimuli Used for Somatosensory Stimulation Affected the Modulation of Corticospinal Excitability. Brain Sciences, 2021, 11, 1494.	2.3	0
14	Influence of Catechol-O-Methyltransferase Gene Polymorphism on the Correlation between Alexithymia and Hypervigilance to Pain. International Journal of Environmental Research and Public Health, 2021, 18, 13265.	2.6	0
15	Establishment of optimal two-point discrimination test method and consideration of reproducibility. Neuroscience Letters, 2020, 714, 134525.	2.1	13
16	Effects of stimulating the supplementary motor area with a transcranial alternating current for bimanual movement performance. Behavioural Brain Research, 2020, 393, 112801.	2.2	5
17	Noisy galvanic vestibular stimulation effect on center of pressure sway during one-legged standing. Journal of Clinical Neuroscience, 2020, 82, 173-178.	1.5	4
18	Effects on motor learning of transcranial alternating current stimulation applied over the primary motor cortex and cerebellar hemisphere. Journal of Clinical Neuroscience, 2020, 78, 296-300.	1.5	12

SHOTA MIYAGUCHI

#	Article	lF	CITATIONS
19	Enhancement of spinal reciprocal inhibition depends on the movement speed and range of repetitive passive movement. European Journal of Neuroscience, 2020, 52, 3929-3943.	2.6	4
20	Timing of Modulation of Corticospinal Excitability by Heartbeat Differs with Interoceptive Accuracy. Neuroscience, 2020, 433, 156-162.	2.3	1
21	The after-effect of noisy galvanic vestibular stimulation on postural control in young people: A randomized controlled trial. Neuroscience Letters, 2020, 729, 135009.	2.1	8
22	Time course of bilateral corticospinal tract excitability in the motor-learning process. Neuroscience Letters, 2019, 711, 134410.	2.1	2
23	The effects of mechanical tactile stimulation on corticospinal excitability and motor function depend on pin protrusion patterns. Scientific Reports, 2019, 9, 16677.	3.3	9
24	Comparison of transcranial electrical stimulation regimens for effects on inhibitory circuit activity in primary somatosensory cortex and tactile spatial discrimination performance. Behavioural Brain Research, 2019, 375, 112168.	2.2	25
25	10 Hz transcranial alternating current stimulation over posterior parietal cortex facilitates tactile temporal order judgment. Behavioural Brain Research, 2019, 368, 111899.	2.2	13
26	The effect of transcranial random noise stimulation on corticospinal excitability and motor performance. Neuroscience Letters, 2019, 705, 138-142.	2.1	17
27	The effect of combined transcranial direct current stimulation and peripheral nerve electrical stimulation on corticospinal excitability. PLoS ONE, 2019, 14, e0214592.	2.5	4
28	The effect of gamma tACS over the M1 region and cerebellar hemisphere does not depend on current intensity. Journal of Clinical Neuroscience, 2019, 65, 54-58.	1.5	14
29	Repetitive Passive Movement Modulates Corticospinal Excitability: Effect of Movement and Rest Cycles and Subject Attention. Frontiers in Behavioral Neuroscience, 2019, 13, 38.	2.0	6
30	Effects of repetitive passive movement on ankle joint on spinal reciprocal inhibition. Experimental Brain Research, 2019, 237, 3409-3417.	1.5	5
31	Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neuroscience Letters, 2019, 694, 64-68.	2.1	36
32	Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimulation, 2018, 11, 85-93.	1.6	53
33	Repetitive Passive Finger Movement Modulates Primary Somatosensory Cortex Excitability. Frontiers in Human Neuroscience, 2018, 12, 332.	2.0	9
34	Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation. Neural Plasticity, 2018, 2018, 1-9.	2.2	10
35	Transcranial Alternating Current Stimulation With Gamma Oscillations Over the Primary Motor Cortex and Cerebellar Hemisphere Improved Visuomotor Performance. Frontiers in Behavioral Neuroscience, 2018, 12, 132.	2.0	42
36	Somatosensory Inputs Induced by Passive Movement Facilitate Primary Motor Cortex Excitability Depending on the Interstimulus Interval, Movement Velocity, and Joint Angle. Neuroscience, 2018, 386, 194-204.	2.3	7

Shota Miyaguchi

#	Article	lF	CITATIONS
37	Variability and Reliability of Paired-Pulse Depression and Cortical Oscillation Induced by Median Nerve Stimulation. Brain Topography, 2018, 31, 780-794.	1.8	6
38	Corticospinal excitability following repetitive voluntary movement. Journal of Clinical Neuroscience, 2018, 57, 93-98.	1.5	4
39	Inhibitory Mechanisms in Primary Somatosensory Cortex Mediate the Effects of Peripheral Electrical Stimulation on Tactile Spatial Discrimination. Neuroscience, 2018, 384, 262-274.	2.3	11
40	Regulation of primary motor cortex excitability by repetitive passive finger movement frequency. Neuroscience, 2017, 357, 232-240.	2.3	15
41	Decrease in shortâ€latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement. Brain and Behavior, 2017, 7, e00744.	2.2	11
42	Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude. NeuroReport, 2017, 28, 1202-1207.	1.2	2
43	Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability. Frontiers in Human Neuroscience, 2017, 11, 146.	2.0	18
44	Effects of Passive Finger Movement on Cortical Excitability. Frontiers in Human Neuroscience, 2017, 11, 216.	2.0	10
45	Modulation of Cortical Inhibitory Circuits after Cathodal Transcranial Direct Current Stimulation over the Primary Motor Cortex. Frontiers in Human Neuroscience, 2016, 10, 30.	2.0	23
46	Do Differences in Levels, Types, and Duration of Muscle Contraction Have an Effect on the Degree of Post-exercise Depression?. Frontiers in Human Neuroscience, 2016, 10, 159.	2.0	12
47	Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability. Frontiers in Human Neuroscience, 2016, 10, 668.	2.0	105
48	Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields. Brain Topography, 2016, 29, 693-703.	1.8	4
49	Correlation Between the Cerebral Oxyhaemoglobin Signal and Physiological Signals During Cycling Exercise: A Near-Infrared Spectroscopy Study. Advances in Experimental Medicine and Biology, 2016, 923, 159-166.	1.6	9
50	Effect of muscle contraction strength on gating of somatosensory magnetic fields. Experimental Brain Research, 2016, 234, 3389-3398.	1.5	11
51	Effect of Transcranial Direct Current Stimulation over the Primary Motor Cortex on Cerebral Blood Flow: A Time Course Study Using Near-infrared Spectroscopy. Advances in Experimental Medicine and Biology, 2016, 876, 335-341.	1.6	19
52	Changes in Cortical Oxyhaemoglobin Signal During Low-Intensity Cycle Ergometer Activity: A Near-Infrared Spectroscopy Study. Advances in Experimental Medicine and Biology, 2016, 876, 79-85.	1.6	10
53	Effects of cathodal transcranial direct current stimulation to primary somatosensory cortex on short-latency afferent inhibition. NeuroReport, 2015, 26, 634-637.	1.2	21
54	Depression of corticomotor excitability after muscle fatigue induced by electrical stimulation and voluntary contraction. Frontiers in Human Neuroscience, 2015, 9, 363.	2.0	24

Shota Miyaguchi

#	Article	IF	CITATIONS
55	Effect of Paired-Pulse Electrical Stimulation on the Activity of Cortical Circuits. Frontiers in Human Neuroscience, 2015, 9, 671.	2.0	5
56	The effect of anodal transcranial direct current stimulation over the primary motor or somatosensory cortices on somatosensory evoked magnetic fields. Clinical Neurophysiology, 2015, 126, 60-67.	1.5	22
57	The modulatory effect of electrical stimulation on the excitability of the corticospinal tract varies according to the type of muscle contraction being performed. Frontiers in Human Neuroscience, 2014, 8, 835.	2.0	10
58	No relation between afferent facilitation induced by digital nerve stimulation and the latency of cutaneomuscular reflexes and somatosensory evoked magnetic fields. Frontiers in Human Neuroscience, 2014, 8, 1023.	2.0	12
59	Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement. Brain Research, 2013, 1529, 83-91.	2.2	57