Artur Benisek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3147404/publications.pdf Version: 2024-02-01

ADTILD RENISER

#	Article	IF	CITATIONS
1	Thermodynamic data of belite polymorphs. Cement and Concrete Research, 2022, 152, 106621.	11.0	3
2	Prediction and observation of formation of Ca–Mg arsenates in acidic and alkaline fluids: Thermodynamic properties and mineral assemblages at Jáchymov, Czech Republic and Rotgülden, Austria. Chemical Geology, 2021, 559, 119922.	3.3	5
3	Raman spectroscopic insights into the glass transition of poly(methyl methacrylate). Physical Chemistry Chemical Physics, 2021, 23, 1649-1665.	2.8	12
4	A new activity model for Fe–Mg–Al biotites: II—Applications in the K2O–FeO–MgO–Al2O3–SiO2â€ (KFMASH) system. Contributions To Mineralogy and Petrology, 2021, 176, 1.	€"H2O 3.1	2
5	A new activity model for Fe–Mg–Al biotites: l—Derivation and calibration of mixing parameters. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	0
6	Chapmanite [Fe ₂ Sb(Si ₂ O ₅)O ₃ (thermodynamic properties and formation in low-temperature environments. European Journal of Mineralogy, 2021, 33, 357-371.	O <u>H</u>)]:	3
7	The assimilation of felsic xenoliths in kimberlites: insights into temperature and volatiles during kimberlite emplacement. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	3
8	Excess heat capacity and entropy of mixing along the hydroxyapatite-chlorapatite and hydroxyapatite-fluorapatite binaries. Physics and Chemistry of Minerals, 2021, 48, 44.	0.8	2
9	Study on the structural phase transitions in NaSICON-type compounds using Ag ₃ Sc ₂ (PO ₄) ₃ as a model system. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 10-22.	1.1	2
10	Excess enthalpy of mixing of mineral solid solutions derived from density-functional calculations. Physics and Chemistry of Minerals, 2020, 47, 15.	0.8	3
11	Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4. Journal of Materials Science, 2020, 55, 8477-8490. Thermodynamic properties, crystal structure and phase relations of pushcharovskite	3.7	5
12	[Cu(AsO ₃ OH)(H ₂ O) a geminite [Cu(AsO ₃ OH)(H ₂ O)] and liroconite	â‹â€‰(1.3	0.5H< 7
13	[Cu ₂ Al(AsO ₄)(OH)&l A new activity model for Mg–Al biotites determined through an integrated approach. Contributions To Mineralogy and Petrology, 2019, 174, 76.	t;sub&an 3.1	np;gt;4& 5
14	Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization?. Polymers, 2019, 11, 1533.	4.5	7
15	Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na ₃ Sc ₂ (PO ₄) ₃ Single Crystals Observed by Microcontact Impedance Spectroscopy. Chemistry of Materials, 2018, 30, 1776-1781.	6.7	16
16	P21/c-C2/c phase transition and mixing properties of the (Li,Na)FeGe2O6 solid solution: A calorimetric and thermodynamic study. Journal of Chemical Thermodynamics, 2018, 120, 123-140.	2.0	6
17	Stability and calorimetric studies of silicoâ€ferrites of calcium aluminum and magnesium. Journal of the American Ceramic Society, 2018, 101, 4193-4202.	3.8	1
18	Plagioclase composition by Raman spectroscopy. Journal of Raman Spectroscopy, 2018, 49, 684-698.	2.5	41

ARTUR BENISEK

#	Article	IF	CITATIONS
19	Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O) x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite. European Journal of Mineralogy, 2018, 30, 259-275.	1.3	20
20	Thermodynamics of disordering in Au3Cu. Journal of Alloys and Compounds, 2018, 735, 1344-1349.	5.5	5
21	Heat capacity measurements of CaAlSiO4F from 5 to 850 K and its standard entropy. American Mineralogist, 2018, 103, 1165-1168.	1.9	3
22	The accuracy of standard enthalpies and entropies for phases of petrological interest derived from density-functional calculations. Contributions To Mineralogy and Petrology, 2018, 173, 90.	3.1	22
23	Thermodynamic properties of mansfieldite (AlAsO ₄ ·2H ₂ O), angelellite (Fe ₄ (AsO ₄) ₂ O ₃) and kamarizaite (Fe ₃ (AsO ₄) ₂ (OH) ₃ ·3H ₂ O). Mineralogical Magazine. 2018. 82. 1333-1354.	1.4	8
24	Vibrational entropy of disorder in Cu ₃ Au with different degrees of short-range order. Physical Chemistry Chemical Physics, 2018, 20, 19441-19446.	2.8	5
25	Thermodynamics and crystal chemistry of rhomboclase, (H ₅ O ₂)Fe(SO ₄) ₂ ·2H ₂ O, and the phase (H ₃ O)Fe(SO ₄) ₂ and implications for acid mine drainage. American Mineralogist. 2017. 102. 643-654.	1.9	5
26	Thermodynamics, stability, crystal structure, and phase relations among euchroite, Cu2 (AsO4)(OH)·3H2O, and related minerals. European Journal of Mineralogy, 2017, 29, 5-16.	1.3	9
27	Thermodynamic properties of tooeleite, Fe63+(As3+O3)4(SO4)(OH)4·4H2O. Chemie Der Erde, 2016, 76, 419-428.	2.0	14
28	Thermodynamic properties of FeAsO 4 ·0.75H 2 O - a more favorable disposable product of low As solubility. Hydrometallurgy, 2016, 164, 136-140.	4.3	8
29	Crystal chemistry, Mössbauer spectroscopy, and thermodynamic properties of botryogen. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2016, 193, 147-159.	0.3	2
30	The Structure and Thermochemistry of Three Fe-Mg Chlorites. Clays and Clay Minerals, 2015, 63, 351-367.	1.3	6
31	The vibrational and configurational entropy of disordering in Cu3Au. Journal of Alloys and Compounds, 2015, 632, 585-590.	5.5	25
32	First-principles investigation of the lattice vibrations in the alkali feldspar solid solution. Physics and Chemistry of Minerals, 2015, 42, 243-249.	0.8	9
33	Standard-state thermodynamic properties of annite, KFe3[(OH)2AlSi3O10], based on new calorimetric measurements. European Journal of Mineralogy, 2015, 27, 603-616.	1.3	5
34	Thermochemistry of the alkali feldspars: Calorimetric study of the entropy relations in the low albite-low microcline series. American Mineralogist, 2014, 99, 76-83.	1.9	11
35	Thermodynamic mixing properties and behavior of almandine–spessartine solid solutions. Geochimica Et Cosmochimica Acta, 2014, 125, 210-224.	3.9	10
36	The vibrational and configurational entropy of α-brass. Journal of Chemical Thermodynamics, 2014, 71, 126-132.	2.0	5

ARTUR BENISEK

#	Article	IF	CITATIONS
37	Thermodynamic mixing properties and behavior of grossular–spessartine, (Ca Mn1â^')3Al2Si3O12, solid solutions. Geochimica Et Cosmochimica Acta, 2014, 141, 294-302.	3.9	7
38	Heat capacity and entropy of rutile and TiO2II: Thermodynamic calculation of rutile–TiO2II transition boundary. Physics of the Earth and Planetary Interiors, 2014, 226, 39-47.	1.9	12
39	Heat capacity and entropy of low structural state plagioclases. Physics and Chemistry of Minerals, 2013, 40, 167-173.	0.8	9
40	Calorimetric study of the entropy relation in the NaCl–KCl system. Journal of Chemical Thermodynamics, 2013, 62, 231-235.	2.0	7
41	The heat capacity of fayalite at high temperatures. American Mineralogist, 2012, 97, 657-660.	1.9	29
42	Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties. American Mineralogist, 2012, 97, 1771-1782.	1.9	25
43	Experimentally Determined Standard Thermodynamic Properties of Synthetic MgSO ₄ ·4H ₂ O (Starkeyite) and MgSO ₄ ·3H ₂ O: A Revised Internally Consistent Thermodynamic Data Set for Magnesium Sulfate Hydrates. Astrobiology, 2012, 12, 1042-1054.	3.0	21
44	Thermodynamic behavior and properties of katoite (hydrogrossular): A calorimetric study. American Mineralogist, 2012, 97, 1252-1255.	1.9	17
45	Grossular: A crystal-chemical, calorimetric, and thermodynamic study. American Mineralogist, 2012, 97, 1299-1313.	1.9	22
46	A relationship to estimate the excess entropy of mixing: Application in silicate solid solutions and binary alloys. Journal of Alloys and Compounds, 2012, 527, 127-131.	5.5	25
47	Heat capacity, entropy and phase equilibria of stishovite. Physics and Chemistry of Minerals, 2012, 39, 153-162.	0.8	15
48	Heat capacity, entropy, and phase equilibria of dmitryivanovite. Physics and Chemistry of Minerals, 2012, 39, 259-267.	0.8	7
49	On the nature of the excess heat capacity of mixing. Physics and Chemistry of Minerals, 2011, 38, 185-191.	0.8	12
50	A sample-saving method for heat capacity measurements on powders using relaxation calorimetry. Cryogenics, 2011, 51, 460-464.	1.7	57
51	Heat capacity and third-law entropy of kaersutite, pargasite, fluoropargasite, tremolite and fluorotremolite. European Journal of Mineralogy, 2010, 22, 319-331.	1.3	8
52	Excess heat capacity and entropy of mixing in the high-structural state (K,Ca)-feldspar binary. Physics and Chemistry of Minerals, 2010, 37, 209-218.	0.8	13
53	Excess heat capacity and entropy of mixing along the chlorapatite–fluorapatite binary join. Physics and Chemistry of Minerals, 2010, 37, 665-676.	0.8	27
54	A ternary feldspar-mixing model based on calorimetric data: development and application. Contributions To Mineralogy and Petrology, 2010, 160, 327-337.	3.1	126

ARTUR BENISEK

#	Article	IF	CITATIONS
55	Excess heat capacity and entropy of mixing in ternary series of high-structural-state feldspars. European Journal of Mineralogy, 2010, 22, 403-410.	1.3	23
56	Excess heat capacity and entropy of mixing in high structural state plagioclase. American Mineralogist, 2009, 94, 1153-1161.	1.9	28
57	Thermodynamic mixing behavior of synthetic Ca-Tschermak–diopside pyroxene solid solutions: III. An analysis of IR line broadening and heat of mixing behavior. Physics and Chemistry of Minerals, 2008, 35, 399-407.	0.8	17
58	The uncertainty in determining the third law entropy by the heat-pulse calorimetric technique. Cryogenics, 2008, 48, 527-529.	1.7	25
59	Thermodynamic mixing behavior of synthetic Ca-Tschermak–diopside pyroxene solid solutions: I. Volume and heat capacity of mixing. Physics and Chemistry of Minerals, 2007, 34, 733-746.	0.8	28
60	Thermodynamic mixing behavior of synthetic Ca-Tschermak–diopside pyroxene solid solutions: II. Heat of mixing and activity–composition relationships. Physics and Chemistry of Minerals, 2007, 34, 747-755.	0.8	18
61	Control of Oxygen Partial Pressure by means of H[sub 2]–H[sub 2]O–O[sub 2] or CO–CO[sub 2]–O[sub 2] Gas Mixtures. Journal of the Electrochemical Society, 2005, 152, H157.	2.9	6
62	New developments in two-feldspar thermometry. American Mineralogist, 2004, 89, 1496-1504.	1.9	74
63	Electrochemical device for the precise adjustment of oxygen partial pressures in a gas stream. Solid State Ionics, 2004, 170, 99-104.	2.7	8
64	Enthalpies in (Na,Ca)- and (K,Ca)-feldspar binaries: a high-temperature solution calorimetric study. Contributions To Mineralogy and Petrology, 2003, 145, 119-129.	3.1	19
65	Thermodynamic properties of Na2Ti6O13 and Na2Ti3O7: electrochemical and calorimetric determination. Journal of Chemical Thermodynamics, 2003, 35, 1469-1487.	2.0	25
66	The heat capacity of two natural chlorite group minerals derived from differential scanning calorimetry. Physics and Chemistry of Minerals, 2001, 28, 332-336.	0.8	14
67	Transport properties of La0.4Sr0.6CoO3â^'. Solid State Ionics, 2001, 141-142, 375-380.	2.7	20
68	Heat capacities of Tschermak substituted Fe-biotite. Contributions To Mineralogy and Petrology, 1999, 135, 53-61.	3.1	14
69	Annite stability revised: hydrogen-sensor data for the reaction annite = sanidine + magnetite + H 2 : additional results and reply to Chou. Contributions To Mineralogy and Petrology, 1997, 128, 306-311.	3.1	4
70	Activity-composition relationship in Tschermak's substituted Fe biotites at 700°C, 2 kbar. Contributions To Mineralogy and Petrology, 1996, 125, 85-99.	3.1	12
71	The stability of annite+quartz: reversed experimental data for the reaction 2 annite+3 quartz=2 sanidine+3 fayalite +2 H 2 O. Contributions To Mineralogy and Petrology, 1995, 121, 380-387.	3.1	9
72	Factors controlling the development of prism faces in granite zircons: a microprobe study. Contributions To Mineralogy and Petrology, 1993, 114, 441-451.	3.1	122