
Jian-Zhong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3147281/publications.pdf Version: 2024-02-01

Ιμη-Ζησης Γιπ

#	Article	IF	CITATIONS
1	Biosensor-assisted evolution for high-level production of 4-hydroxyphenylacetic acid in Escherichia coli. Metabolic Engineering, 2022, 70, 1-11.	7.0	14
2	Adaptive laboratory evolution and shuffling of Escherichia coli to enhance its tolerance and production of astaxanthin. , 2022, 15, 17.		7
3	ATP and NADPH engineering of Escherichia coli to improve the production of 4-hydroxyphenylacetic acid using CRISPRi. Biotechnology for Biofuels, 2021, 14, 100.	6.2	19
4	Cell-free Biosynthesis of Chlorogenic Acid Using a Mixture of Chassis Cell Extracts and Purified Spy-Cyclized Enzymes. Journal of Agricultural and Food Chemistry, 2021, 69, 7938-7947.	5.2	7
5	Enhanced Production of Pterostilbene in Escherichia coli Through Directed Evolution and Host Strain Engineering. Frontiers in Microbiology, 2021, 12, 710405.	3.5	4
6	Biosensor-Guided Atmospheric and Room-Temperature Plasma Mutagenesis and Shuffling for High-Level Production of Shikimic Acid from Sucrose in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 11765-11773.	5.2	12
7	Recent Advances in Metabolically Engineered Microorganisms for the Production of Aromatic Chemicals Derived From Aromatic Amino Acids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 407.	4.1	40
8	Enhanced Production of Pinene by Using a Cell-Free System with Modular Cocatalysis. Journal of Agricultural and Food Chemistry, 2020, 68, 2139-2145.	5.2	15
9	Enhanced Astaxanthin Production in <i>Escherichia coli</i> via Morphology and Oxidative Stress Engineering. Journal of Agricultural and Food Chemistry, 2019, 67, 11703-11709.	5.2	22
10	Genomic and transcriptional changes in response to pinene tolerance and overproduction in evolved Escherichia coli. Synthetic and Systems Biotechnology, 2019, 4, 113-119.	3.7	21
11	Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli. Biotechnology for Biofuels, 2019, 12, 94.	6.2	34
12	Metabolic evolution and a comparative omics analysis of <i>Corynebacterium glutamicum</i> for putrescine production. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 123-139.	3.0	39
13	Enhancing Production of Pinene in Escherichia coli by Using a Combination of Tolerance, Evolution, and Modular Co-culture Engineering. Frontiers in Microbiology, 2018, 9, 1623.	3.5	91
14	Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Synthetic and Systems Biotechnology, 2017, 2, 167-175.	3.7	74
15	Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid. Marine Drugs, 2017, 15, 296.	4.6	42
16	Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum. Frontiers in Microbiology, 2017, 8, 1987.	3.5	15
17	Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metabolic Engineering, 2016, 38, 180-190.	7.0	83
18	Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Scientific Reports, 2016, 6, 30080.	3.3	62

JIAN-ZHONG LIU

#	Article	IF	CITATIONS
19	High-Level Expression, Purification and Large-Scale Production of l-Methionine Î ³ -Lyase from Idiomarina as a Novel Anti-Leukemic Drug. Marine Drugs, 2015, 13, 5492-5507.	4.6	10
20	Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum. Folia Microbiologica, 2015, 60, 393-398.	2.3	20
21	Metabolic engineering of <i>Escherichia coli</i> to produce zeaxanthin. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 627-636.	3.0	85
22	Engineering of Escherichia coli for Lycopene Production Through Promoter Engineering. Current Pharmaceutical Biotechnology, 2015, 16, 1094-1103.	1.6	15
23	Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microbial Cell Factories, 2014, 13, 21.	4.0	82
24	Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnology, 2013, 13, 47.	3.3	60
25	Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnology, 2013, 13, 6.	3.3	66
26	Metabolic engineering of <i>Corynebacterium glutamicum</i> for increasing the production of <scp>l</scp> -ornithine by increasing NADPH availability. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1143-1151.	3.0	52
27	Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. Journal of Biotechnology, 2010, 148, 139-143.	3.8	52
28	Activity, stability, and unfolding of reconstituted horseradish peroxidase with modified heme. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 48-54.	1.8	10
29	Thermostability, solvent tolerance, catalytic activity and conformation of cofactor modified horseradish peroxidase. Biochimie, 2008, 90, 1337-1346.	2.6	21
30	Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnology, 2007, 7, 23.	3.3	34
31	Enhanced dye decolorization efficiency by citraconic anhydride-modified horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic, 2006, 41, 81-86.	1.8	50
32	Increased thermal and organic solvent tolerance of modified horseradish peroxidase. Protein Engineering, Design and Selection, 2006, 19, 169-173.	2.1	37
33	Effects of phthalic anhydride modification on horseradish peroxidase stability and structure. Enzyme and Microbial Technology, 2005, 36, 605-611.	3.2	34
34	Optimization of culture conditions for the production of an extracellular ribonuclease by Aspergillus niger in a benchtop bioreactor. World Journal of Microbiology and Biotechnology, 2004, 20, 935-939.	3.6	2
35	Enhanced production of extracellular ribonuclease from Aspergillus niger by optimization of culture conditions using response surface methodology. Biochemical Engineering Journal, 2004, 21, 27-32.	3.6	58
36	Title is missing!. World Journal of Microbiology and Biotechnology, 2003, 19, 317-323.	3.6	101

JIAN-ZHONG LIU

#	Article	IF	CITATIONS
37	Title is missing!. Applied Biochemistry and Microbiology, 2003, 39, 493-496.	0.9	4
38	DNA-binding and cleavage studies of a novel porphyrin ruthenium mixed complex [MPyTPP—Ru(pip)2Cl]+. Transition Metal Chemistry, 2003, 28, 852-857.	1.4	38
39	Treatment of aqueous chlorophenol by phthalic anhydride-modified horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic, 2003, 22, 37-44.	1.8	36
40	Screening and mutagenesis of Aspergillus niger for the improvement of glucose 6-phosphate dehydrogenase production. Prikladnaia Biokhimiia I Mikrobiologiia, 2003, 39, 561-4.	0.4	3
41	Increased thermostability and phenol removal efficiency by chemical modified horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic, 2002, 18, 225-232.	1.8	53