Mark T Waters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314721/publications.pdf

Version: 2024-02-01

41 papers

4,654 citations

27 h-index

201674

289244 40 g-index

44 all docs

44 docs citations

44 times ranked 3577 citing authors

#	Article	IF	CITATIONS
1	GLK Transcription Factors Coordinate Expression of the Photosynthetic Apparatus in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 1109-1128.	6.6	525
2	Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in <i>Arabidopsis</i> Development (Cambridge), 2012, 139, 1285-1295.	2.5	477
3	Strigolactone Signaling and Evolution. Annual Review of Plant Biology, 2017, 68, 291-322.	18.7	470
4	F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8897-8902.	7.1	394
5	Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis Â. Plant Physiology, 2014, 165, 1221-1232.	4.8	260
6	GLK transcription factors regulate chloroplast development in a cellâ€autonomous manner. Plant Journal, 2008, 56, 432-444.	5.7	224
7	<i>LATERAL BRANCHING OXIDOREDUCTASE</i> acts in the final stages of strigolactone biosynthesis in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6301-6306.	7.1	219
8	The making of a chloroplast. EMBO Journal, 2009, 28, 2861-2873.	7.8	214
9	The Arabidopsis Ortholog of Rice DWARF27 Acts Upstream of MAX1 in the Control of Plant Development by Strigolactones Â. Plant Physiology, 2012, 159, 1073-1085.	4.8	179
10	ORE1 balances leaf senescence against maintenance by antagonizing G2â€likeâ€mediated transcription. EMBO Reports, 2013, 14, 382-388.	4.5	155
11	A $\langle i \rangle$ Selaginella moellendorffii $\langle i \rangle$ Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones. Plant Cell, 2015, 27, 1925-1944.	6.6	122
12	Carlactoneâ€independent seedling morphogenesis inÂArabidopsis. Plant Journal, 2013, 76, 1-9.	5.7	115
13	Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant Journal, 2004, 39, 655-667.	5.7	107
14	The karrikin response system of <scp>A</scp> rabidopsis. Plant Journal, 2014, 79, 623-631.	5.7	102
15	Karrikin and Cyanohydrin Smoke Signals Provide Clues to New Endogenous Plant Signaling Compounds. Molecular Plant, 2013, 6, 29-37.	8.3	101
16	KAI2- and MAX2-Mediated Responses to Karrikins and Strigolactones Are Largely Independent of HY5 in Arabidopsis Seedlings. Molecular Plant, 2013, 6, 63-75.	8.3	99
17	Stereospecificity in strigolactone biosynthesis and perception. Planta, 2016, 243, 1361-1373.	3.2	95
18	Structure–Function Analysis of SMAX1 Reveals Domains That Mediate Its Karrikin-Induced Proteolysis and Interaction with the Receptor KAI2. Plant Cell, 2020, 32, 2639-2659.	6.6	90

#	Article	IF	CITATIONS
19	Exploring the molecular mechanism of karrikins and strigolactones. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3743-3746.	2.2	78
20	Karrikinâ€KAl2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. New Phytologist, 2018, 219, 605-618.	7. 3	73
21	Substrate-Induced Degradation of the $\hat{l}\pm\hat{l}^2$ -Fold Hydrolase KARRIKIN INSENSITIVE2 Requires a Functional Catalytic Triad but Is Independent of MAX2. Molecular Plant, 2015, 8, 814-817.	8.3	63
22	The origins and mechanisms of karrikin signalling. Current Opinion in Plant Biology, 2013, 16, 667-673.	7.1	55
23	The Structure of the Karrikin-Insensitive Protein (KAI2) in Arabidopsis thaliana. PLoS ONE, 2013, 8, e54758.	2.5	54
24	Reporter Gene-Facilitated Detection of Compounds in Arabidopsis Leaf Extracts that Activate the Karrikin Signaling Pathway. Frontiers in Plant Science, 2016, 7, 1799.	3.6	48
25	An allelic series at the <i><scp>KARRIKIN INSENSITIVE</scp>Â2</i> locus of <i>Arabidopsis thaliana</i> decouples ligand hydrolysis and receptor degradation from downstream signalling. Plant Journal, 2018, 96, 75-89.	5.7	41
26	Perception of karrikins by plants: a continuing enigma. Journal of Experimental Botany, 2020, 71, 1774-1781.	4.8	34
27	Strigolactones: Destruction-Dependent Perception?. Current Biology, 2012, 22, R924-R927.	3.9	32
28	The corona of the daffodil <i>Narcissus bulbocodium</i> shares stamenâ€like identity and is distinct from the orthodox floral whorls. Plant Journal, 2013, 74, 615-625.	5.7	32
29	Divergent receptor proteins confer responses to different karrikins in two ephemeral weeds. Nature Communications, 2020, 11, 1264.	12.8	29
30	Desmethyl butenolides are optimal ligands for karrikin receptor proteins. New Phytologist, 2021, 230, 1003-1016.	7.3	29
31	Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genetics, 2020, 16, e1009249.	3.5	26
32	Karrikins force a rethink of strigolactone mode of action. Plant Signaling and Behavior, 2012, 7, 969-972.	2.4	21
33	Smoke signals and seed dormancy. Plant Signaling and Behavior, 2011, 6, 1418-1422.	2.4	19
34	KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in $\langle i \rangle$ Arabidopsis thaliana $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112820119.	7.1	19
35	<scp><i>KARRIKIN INSENSITIVE2</i></scp> regulates leaf development, root system architecture and arbuscularâ€mycorrhizal symbiosis in <i>Brachypodium distachyon</i> 1559-1574.	5.7	15
36	From little things big things grow: karrikins and new directions in plant development. Functional Plant Biology, 2017, 44, 373.	2.1	13

3

#	Article	IF	CITATIONS
37	Assaying Germination and Seedling Responses of Arabidopsis to Karrikins. Methods in Molecular Biology, 2017, 1497, 29-36.	0.9	9
38	Solar irradiation of the seed germination stimulant karrikinolide produces two novel head-to-head cage dimers. Organic and Biomolecular Chemistry, 2012, 10, 4069.	2.8	7
39	Spoilt for Choice: New Options for Inhibitors of Strigolactone Signaling. Molecular Plant, 2019, 12, 21-23.	8.3	4
40	Arabidopsis Hydroponics and Shoot Branching Assay. Bio-protocol, 2012, 2, .	0.4	4
41	Evolution of Strigolactone Biosynthesis and Signalling. , 2019, , 143-161.		0