Jun Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3145439/publications.pdf

Version: 2024-02-01

117625 110387 4,568 96 34 64 citations h-index g-index papers 97 97 97 3789 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The genome of the pear (<i>Pyrus bretschneideri</i> Rehd.). Genome Research, 2013, 23, 396-408.	5 . 5	832
2	Mapâ€based cloning of the pear gene <i><scp>MYB</scp>114</i> identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 2017, 92, 437-451.	5.7	279
3	Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant Journal, 2010, 63, 1042-1053.	5.7	182
4	High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. Journal of Experimental Botany, 2014, 65, 5771-5781.	4.8	171
5	Diversification and independent domestication of Asian and European pears. Genome Biology, 2018, 19, 77.	8.8	149
6	S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of <i>Pyrus pyrifolia</i> Journal of Cell Science, 2010, 123, 4301-4309.	2.0	116
7	CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6, 202-208.	9.3	116
8	<i>PbrmiR397a</i> regulates lignification during stone cell development in pear fruit. Plant Biotechnology Journal, 2019, 17, 103-117.	8.3	114
9	Identification of miRNAs involved in pear fruit development and quality. BMC Genomics, 2014, 15, 953.	2.8	102
10	PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Horticulture Research, 2020, 7, 37.	6.3	95
11	Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcription Factors in Chinese White Pear (<i>Pyrus bretschneideri</i>). Plant and Cell Physiology, 2016, 57, 824-847.	3.1	89
12	A New Insight into the Evolution and Functional Divergence of SWEET Transporters in Chinese White Pear (Pyrus bretschneideri). Plant and Cell Physiology, 2017, 58, 839-850.	3.1	87
13	Hydrogen Sulfide Prolongs Postharvest Storage of Fresh-Cut Pears (Pyrus pyrifolia) by Alleviation of Oxidative Damage and Inhibition of Fungal Growth. PLoS ONE, 2014, 9, e85524.	2.5	86
14	Different Modes of Gene Duplication Show Divergent Evolutionary Patterns and Contribute Differently to the Expansion of Gene Families Involved in Important Fruit Traits in Pear (Pyrus) Tj ETQq0 0 0 rgBT	/Oseslock	։ 1 0 7 ፔ f 50 217
15	Genome-Wide Function, Evolutionary Characterization and Expression Analysis of Sugar Transporter Family Genes in Pear (<i>Pyrus bretschneideri</i> Rehd). Plant and Cell Physiology, 2015, 56, 1721-1737.	3.1	74
16	Sâ€RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of <i>Pyrus pyrifolia in vitro</i> . Plant Journal, 2009, 57, 220-229.	5.7	73
17	PbrMYB169 positively regulates lignification of stone cells in pear fruit. Journal of Experimental Botany, 2019, 70, 1801-1814.	4.8	73
18	An AFLP, SRAP, and SSR Genetic Linkage Map and Identification of QTLs for Fruit Traits in Pear (Pyrus L.). Plant Molecular Biology Reporter, 2013, 31, 678-687.	1.8	69

#	Article	IF	Citations
19	An eFP browser for visualizing strawberry fruit and flower transcriptomes. Horticulture Research, 2017, 4, 17029.	6.3	63
20	The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research, 2019, 6, 134.	6.3	61
21	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	21.4	60
22	Distinct transcriptome profiles reveal gene expression patterns during fruit development and maturation in five main cultivated species of pear (Pyrus L.). Scientific Reports, 2016, 6, 28130.	3.3	59
23	Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). Frontiers in Plant Science, 2015, 6, 795.	3.6	53
24	The \hat{I}^2 -amylase PbrBAM3 from pear (Pyrus betulaefolia) regulates soluble sugar accumulation and ROS homeostasis in response to cold stress. Plant Science, 2019, 287, 110184.	3.6	52
25	Identification of differentially expressed genes related to coloration in red/green mutant pear (Pyrus) Tj ETQq $1\ 1$	0.784314 1.6	· rgBT Overlo
26	Construction of a High-Density Simple Sequence Repeat Consensus Genetic Map for Pear (Pyrus spp.). Plant Molecular Biology Reporter, 2015, 33, 316-325.	1.8	47
27	Development of an integrated 200K <scp>SNP</scp> genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (<i>Pyrus</i>). Plant Biotechnology Journal, 2019, 17, 1582-1594.	8.3	46
28	Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear (Pyrus communis L.). Tree Genetics and Genomes, 2013, 9, 1351-1360.	1.6	45
29	Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genetics and Genomes, $2015, 11, 1$.	1.6	45
30	Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications, 2021, 12, 1144.	12.8	44
31	Analysis of the role of LinA and LinB in biodegradation of ?-hexachlorocyclohexane. Environmental Microbiology, 2007, 9, 2331-2340.	3.8	41
32	The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC Plant Biology, 2018, 18, 46.	3.6	41
33	Molecular Determinants and Mechanisms of Gametophytic Self-Incompatibility in Fruit Trees of Rosaceae. Critical Reviews in Plant Sciences, 2013, 32, 53-68.	5.7	39
34	Evidence for Apoplasmic Phloem Unloading in Pear Fruit. Plant Molecular Biology Reporter, 2014, 32, 931-939.	1.8	39
35	Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit. Plant Physiology and Biochemistry, 2016, 105, 150-161.	5 . 8	38
36	Marker-trait associations and genomic predictions of interspecific pear (Pyrus) fruit characteristics. Scientific Reports, 2019, 9, 9072.	3.3	38

#	Article	IF	CITATIONS
37	Genome-wide identification of the <i>MADS-box</i> transcription factor family in pear (<i>Pyrus) Tj ETQq1 1 0.</i>	784314 rgBT 2.0 rgBT	/gyerlock 10
38	Identification and testing of reference genes for gene expression analysis in pollen of Pyrus bretschneideri. Scientia Horticulturae, 2015, 190, 43-56.	3.6	34
39	Comparative Transcriptomic Analysis Provides Insight into the Domestication and Improvement of Pear (<i>P. pyrifolia</i>) Fruit. Plant Physiology, 2019, 180, 435-452.	4.8	33
40	Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus) Tj ETQq0	0 0 rgBT /Ove 2.8	erlock 10 Tf !
41	A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit. Genome Biology, 2021, 22, 313.	8.8	32
42	Fine-mapping and validation of the genomic region underpinning pear red skin colour. Horticulture Research, 2019, 6, 29.	6.3	31
43	Reciprocal regulation of Ca ²⁺ â€activated outward K ⁺ channels of <i>Pyrus pyrifolia</i> pollen by heme and carbon monoxide. New Phytologist, 2011, 189, 1060-1068.	7.3	30
44	Low temperature inhibits pollen tube growth by disruption of both tip-localized reactive oxygen species and endocytosis in Pyrus bretschneideri Rehd Plant Physiology and Biochemistry, 2014, 74, 255-262.	5.8	30
45	A Novel Set of EST-Derived SSR Markers for Pear and Cross-Species Transferability in Rosaceae. Plant Molecular Biology Reporter, 2014, 32, 290-302.	1.8	28
46	Integrated high-density consensus genetic map of <i>Pyrus < /i> and anchoring of the †Bartlett†10.0 (<i>Pyrus communis </i>) genome. DNA Research, 2017, 24, dsw063.</i>	3.4	28
47	Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants. Genome Research, 2019, 29, 1889-1899.	5.5	28
48	Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves. Gene, 2020, 743, 144582.	2.2	27
49	Comparative Genomic Analysis Reveals Multiple Long Terminal Repeats, Lineage-Specific Amplification, and Frequent Interelement Recombination for Cassandra Retrotransposon in Pear (Pyrus) Tj ETQq $1\ 1\ 0.78431$	4 rgB I. \$Overl	o ch 610 Tf 50
50	The Variation of Stone Cell Content in 236 Germplasms of Sand Pear (Pyrus pyrifolia) and Identification of Related Candidate Genes. Horticultural Plant Journal, 2021, 7, 108-116.	5.0	25
51	cAMP activates hyperpolarization-activated Ca2+ channels in the pollen of Pyrus pyrifolia. Plant Cell Reports, 2011, 30, 1193-1200.	5 . 6	23
52	Maternal inheritance has impact on organic acid content in progeny of pear (Pyrus spp.) fruit. Euphytica, 2016, 209, 305-321.	1.2	23
53	Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri). Plant Systematics and Evolution, 2017, 303, 71-90.	0.9	23
54	Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear (Pyrus bretschneideri). BMC Plant Biology, 2020, 20, 14.	3.6	22

#	Article	IF	CITATIONS
55	Self-compatibility of â€~Katy' apricot (Prunus armeniaca L.) is associated with pollen-part mutations. Sexual Plant Reproduction, 2011, 24, 23-35.	2.2	21
56	Low temperature inhibits pollen viability by alteration of actin cytoskeleton and regulation of pollen plasma membrane ion channels in Pyrus pyrifolia. Environmental and Experimental Botany, 2012, 78, 70-75.	4.2	20
57	Genome-wide identification and comparative analysis of the ADH gene family in Chinese white pear (Pyrus bretschneideri) and other Rosaceae species. Genomics, 2020, 112, 3484-3496.	2.9	20
58	Mining and evolution analysis of lateral organ boundaries domain (LBD) genes in Chinese white pear (Pyrus bretschneideri). BMC Genomics, 2020, 21, 644.	2.8	18
59	Metabolomics Combined with Proteomics Provide a Novel Interpretation of the Changes in Flavonoid Glycosides during White Tea Processing. Foods, 2022, 11, 1226.	4.3	17
60	Identification of S-genotypes in Chinese cherry cultivars (Prunus pseudocerasus Lindl.). Tree Genetics and Genomes, 2010, 6, 579-590.	1.6	16
61	Heteroallelic diploid pollen led to self-compatibility in tetraploid cultivar â€~Sha 01' (Pyrus) Tj ETQq1 1 0.784.	314 rgBT /	Overlock 10
62	Genome-wide Annotation and Comparative Analysis of Long Terminal Repeat Retrotransposons between Pear Species of P. bretschneideri and P. Communis. Scientific Reports, 2015, 5, 17644.	3.3	16
63	The PyPIF5-PymiR 156 a-PySPL 9 -PyMYB 114 /MYB 10 module regulates light-induced anthocyanin biosynthesis in red pear. Molecular Horticulture, $2021,1,.$	5.8	16
64	Dynamic transcriptome analysis of root nitrate starvation and re-supply provides insights into nitrogen metabolism in pear (Pyrus bretschneideri). Plant Science, 2018, 277, 322-333.	3.6	15
65	Transcriptomic and Gas Chromatography–Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing â€~Yuluxiang' Pear Fruit. Journal of Agricultural and Food Chemistry, 2019, 67, 8319-8331.	5.2	15
66	Genome-wide identification, expression and functional analysis of the phosphofructokinase gene family in Chinese white pear (Pyrus bretschneideri). Gene, 2019, 702, 133-142.	2.2	15
67	Comparison of multiple algorithms to reliably detect structural variants in pears. BMC Genomics, 2020, 21, 61.	2.8	15
68	Inheritance of Hetero-Diploid Pollen S-Haplotype in Self-Compatible Tetraploid Chinese Cherry (Prunus) Tj ETQq0	0 0 rgBT /	Overlock 10
69	The southwestern origin and eastward dispersal of pear (Pyrus pyrifolia) in East Asia revealed by comprehensive genetic structure analysis with SSR markers. Tree Genetics and Genomes, 2018, 14, 1.	1.6	12
70	Pear genetics: Recent advances, new prospects, and a roadmap for the future. Horticulture Research, 2022, 9, .	6.3	12
71	S genotyping and S screening utilizing SFB gene polymorphism in Japanese plum and sweet cherry by dot-blot analysis. Molecular Breeding, 2008, 21, 339-349.	2.1	11
72	Recognition specificity of self-incompatibility in Pyrus and Malus. Molecular Breeding, 2011, 28, 549-557.	2.1	11

#	Article	IF	CITATIONS
73	Self-compatibility of â€~Zaoguan' (Pyrus bretschneideri Rehd.) is associated with style-part mutations. Genetica, 2011, 139, 1149-1158.	1.1	10
74	Genome-wide survey and expression analysis of the SLAC/SLAH gene family in pear (Pyrus) Tj ETQq0 0 0 rgBT /Ov	verlogk 10	Tf 50 702 Td
75	Pearprocess: A new phenotypic tool for stone cell trait evaluation in pear fruit. Journal of Integrative Agriculture, 2020, 19, 1625-1634.	3.5	10
76	An accumulation of genetic variation and selection across the disease-related genes during apple domestication. Tree Genetics and Genomes, 2021, 17, 1.	1.6	10
77	Evaluation of new IRAP markers of pear and their potential application in differentiating bud sports and other Rosaceae species. Tree Genetics and Genomes, 2015, 11, 1.	1.6	9
78	Molecular analysis of eight SFB alleles and a new SFB-like gene in Prunus pseudocerasus and Prunus speciosa. Tree Genetics and Genomes, 2011, 7, 891-902.	1.6	7
79	Hetero-diploid pollen grains that represent self-compatibility are incompatible with non-self receptors in tetraploid Chinese cherry (Prunus pseudocerasus Lindl). Tree Genetics and Genomes, 2014, 10, 619-625.	1.6	7
80	Genetic variation and population structure of "Zangli―pear landraces in Tibet revealed by SSR markers. Tree Genetics and Genomes, 2017, 13, 1.	1.6	7
81	Fast diffusion of domesticated maize to temperate zones. Scientific Reports, 2017, 7, 2077.	3.3	7
82	Contrasting genetic variation and positive selection followed the divergence of NBS-encoding genes in Asian and European pears. BMC Genomics, 2020, 21, 809.	2.8	7
83	Homozygosity Mapping Reveals Population History and Trait Architecture in Self-Incompatible Pear (Pyrus spp.). Frontiers in Plant Science, 2020, 11, 590846.	3.6	7
84	Characterization of the S-RNase genomic DNA allele sequence in Prunus speciosa and P. pseudocerasus. Scientia Horticulturae, 2012, 144, 93-101.	3.6	6
85	Identification of differentially expressed genes using digital gene expression profiles in Pyrus pyrifolia Nakai cv. Hosui bud release following early defoliation. Tree Genetics and Genomes, 2015, 11, 1.	1.6	6
86	Characterisation of the whole-genome wide hexokinase gene family unravels the functional divergence in pear (Pyrus bretschneideri Rehd.). Journal of Horticultural Science and Biotechnology, 2018, 93, 244-254.	1.9	6
87	Genome-wide comparison of the GRAS protein family in eight Rosaceae species and <i>GRAS</i> gene expression analysis in Chinese white pear (<i>Pyrus bretschneideri</i> Rehder). New Zealand Journal of Crop and Horticultural Science, 2022, 50, 303-325.	1.3	5
88	Taxonomic Uncertainty and Its Conservation Implications in Management, a Case from Pyrus hopeiensis (Rosaceae). Diversity, 2022, 14, 417.	1.7	4
89	Identification and Characterisation of SFBs in Prunus mume. Plant Molecular Biology Reporter, 2012, 30, 878-884.	1.8	3
90	The activity of plasma membrane hyperpolarization-activated Ca2+ channels during pollen development of Pyrus pyrifolia. Acta Physiologiae Plantarum, 2012, 34, 969-975.	2.1	3

#	Article	IF	CITATIONS
91	Genome-wide genetic diversity and IBD analysis reveals historic dissemination routes of pear in China. Tree Genetics and Genomes, 2022, 18, 1.	1.6	3
92	Alternative splicing analysis provides insight into the domestication and improvement of pear (Pyrus) Tj ETQq0 (O ggBT	Overlock 10 Tf
93	Identification of key genes related to seedlessness by genome-wide detection of structural variation and transcriptome analysis in â€~Shijiwuhe' pear. Gene, 2020, 738, 144480.	2.2	2
94	The Genome of Pear. Compendium of Plant Genomes, 2019, , 133-143.	0.5	1
95	Dynamic Diversity of NLR Genes in Triticum and Mining of Promising NLR Alleles for Disease Resistance. Current Issues in Molecular Biology, 2021, 43, 965-977.	2.4	0
96	Construction of a genetically engineered and stable strain of degrading gamma-hexachlorocyclohexane and carbendazim by transposon mini-Tn5. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica, 2008, 48, 45-50.	0.2	0