
Stoichko D Dimitrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3144596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nature Communications, 2016, 7, 11585.	12.8	1,053
2	Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy and Environmental Science, 2016, 9, 3783-3793.	30.8	477
3	Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nature Communications, 2018, 9, 4968.	12.8	244
4	Materials Design Considerations for Charge Generation in Organic Solar Cells. Chemistry of Materials, 2014, 26, 616-630.	6.7	232
5	Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energy and Environmental Science, 2014, 7, 435-441.	30.8	219
6	On the Energetic Dependence of Charge Separation in Low-Band-Gap Polymer/Fullerene Blends. Journal of the American Chemical Society, 2012, 134, 18189-18192.	13.7	180
7	Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices. Journal of Physical Chemistry Letters, 2013, 4, 209-215.	4.6	120
8	Effect of Systematically Tuning Conjugated Donor Polymer Lowest Unoccupied Molecular Orbital Levels via Cyano Substitution on Organic Photovoltaic Device Performance. Chemistry of Materials, 2016, 28, 5110-5120.	6.7	115
9	Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO ₂ . Journal of Materials Chemistry A, 2015, 3, 7219-7223.	10.3	112
10	Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. Polymers, 2016, 8, 14.	4.5	111
11	Performance and Stability of Lead Perovskite/TiO ₂ , Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns. Advanced Materials, 2014, 26, 6268-6273.	21.0	103
12	Twist and Degrade—Impact of Molecular Structure on the Photostability of Nonfullerene Acceptors and Their Photovoltaic Blends. Advanced Energy Materials, 2019, 9, 1803755.	19.5	95
13	Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Advanced Functional Materials, 2018, 28, 1704389.	14.9	84
14	Ultrafast Electron Transfer Dynamics in CdSe/CdTe Donorâ^Acceptor Nanorods. Journal of Physical Chemistry C, 2008, 112, 12074-12076.	3.1	81
15	Thieno[3,2â€ <i>b</i>]thiopheneâ€diketopyrrolopyrrole Containing Polymers for Inverted Solar Cells Devices with High Short Circuit Currents. Advanced Functional Materials, 2013, 23, 5647-5654.	14.9	78
16	Polaron pair mediated triplet generation in polymer/fullerene blends. Nature Communications, 2015, 6, 6501.	12.8	74
17	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. ACS Energy Letters, 2019, 4, 846-852.	17.4	71
18	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	5.0	71

STOICHKO D DIMITROV

#	Article	IF	CITATIONS
19	Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 14690-14696.	10.3	62
20	Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers. Advanced Energy Materials, 2018, 8, 1802474.	19.5	59
21	Efficient Charge Photogeneration by the Dissociation of PC70BM Excitons in Polymer/Fullerene Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 140-144.	4.6	56
22	Isostructural, Deeper Highest Occupied Molecular Orbital Analogues of Poly(3-hexylthiophene) for High-Open Circuit Voltage Organic Solar Cells. Chemistry of Materials, 2013, 25, 4239-4249.	6.7	55
23	Roll-to-roll slot-die coated P–I–N perovskite solar cells using acetonitrile based single step perovskite solvent system. Sustainable Energy and Fuels, 2020, 4, 3340-3351.	4.9	53
24	Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. Chemistry of Materials, 2016, 28, 8366-8378.	6.7	52
25	Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses. Advanced Functional Materials, 2020, 30, 2001482.	14.9	43
26	Towards optimisation of photocurrent from fullerene excitons in organic solar cells. Energy and Environmental Science, 2014, 7, 1037.	30.8	42
27	Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. Journal of the American Chemical Society, 2015, 137, 10383-10390.	13.7	41
28	Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance. Advanced Functional Materials, 2020, 30, 2004563.	14.9	40
29	Spectroscopic Investigation of the Effect of Microstructure and Energetic Offset on the Nature of Interfacial Charge Transfer States in Polymer: Fullerene Blends. Journal of the American Chemical Society, 2019, 141, 4634-4643.	13.7	34
30	Manipulating the Optical Properties of Carbon Dots by Fine‶uning their Structural Features. ChemSusChem, 2019, 12, 4432-4441.	6.8	33
31	Charge Generation Dynamics in CdS:P3HT Blends for Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 4253-4257.	4.6	31
32	Evidence for "Slow―Electron Injection in Commercially Relevant Dye-Sensitized Solar Cells by vis–NIR and IR Pump–Probe Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 25317-25324.	3.1	30
33	Investigating the Superoxide Formation and Stability in Mesoporous Carbon Perovskite Solar Cells with an Aminovaleric Acid Additive. Advanced Functional Materials, 2020, 30, 1909839.	14.9	30
34	Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing. Journal of Materials Chemistry A, 2014, 2, 19282-19289.	10.3	25
35	Exciton and Charge Generation in PC ₆₀ BM Thin Films. Journal of Physical Chemistry C, 2017, 121, 14470-14475.	3.1	22
36	Variations of Infiltration and Electronic Contact in Mesoscopic Perovskite Solar Cells Revealed by Highâ€Resolution Multiâ€Mapping Techniques. Advanced Functional Materials, 2019, 29, 1900885.	14.9	22

#	Article	IF	CITATIONS
37	Thiazole Orange Dimers in DNA: Fluorescent Base Substitutions with Hybridization Readout. Chemistry - A European Journal, 2016, 22, 2386-2395.	3.3	21
38	Charge Separation in Intermixed Polymer:PC ₇₀ BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition. Journal of Physical Chemistry C, 2017, 121, 9790-9801.	3.1	20
39	Photophysical Study of DPPTTâ€T/PC ₇₀ BM Blends and Solar Devices as a Function of Fullerene Loading: An Insight into EQE Limitations of DPPâ€Based Polymers. Advanced Functional Materials, 2017, 27, 1604426.	14.9	13
40	Solutionâ€Processable Carbon Nanotube Nanohybrids for Multiplexed Photoresponsive Devices. Advanced Functional Materials, 0, , 2105719.	14.9	9
41	Femtosecond Probing of Optical Phonon Dynamics in Quantum-Confined CdTe Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 4198-4201.	3.1	7
42	Excitation Wavelength-Dependent Internal Quantum Efficiencies in a P3HT/Nonfullerene Acceptor Solar Cell. Journal of Physical Chemistry C, 2019, 123, 5826-5832.	3.1	6
43	Photoinduced Charge Transfer: From Photography to Solar Energy. Science Progress, 2017, 100, 212-230.	1.9	2
44	Triplet Generation Dynamics in Si- and Ge-Bridged Conjugated Copolymers. Journal of Physical Chemistry C, 2022, 126, 1036-1045.	3.1	1
45	Transient absorption spectroscopy of ultra-low band gap polymers for organic electronic applications. Proceedings of SPIE, 2016, , .	0.8	0
46	Charge generation in polymer:fullerene photovoltaic systems (Conference Presentation). , 2016, , .		0
47	Understanding Hydrogen Evolution Activity of Linear Organic Photocatalysts. , 0, , .		0
48	Understanding Hydrogen Evolution Activity of Linear Organic Photocatalysts. , 0, , .		0